Computational Analysis of Sound Events in Realistic Multisource Environments

Tuomas Virtanen Tampere University of Technology, Finland

Outline

- Information in everyday sounscapes
- Characterizing complex multisource data using categorical variables
- Supervised learning approach for polyphonic event detection
- Data acquisition
- Convolutional recurrent neural networks
- Public evaluation challenges

Information in everyday soundscapes

Information in everyday soundscapes

- Entire scene
 - Birthday party, busy street, home, etc.
- Individual sources
 - Car, beep, dog barking, etc.
- Spatial properties
 - Locations, distance, movement
- Other properties
 - Number of sources, loudness, etc.

Information in everyday soundscapes

- Entire scene
 - Birthday party, busy street, home, etc.
- Individual sources
 - Car, beep, dog barking, etc.
- Spatial properties
 - Locations, distance, movement
- Other properties
 - Number of sources, loudness, etc.

AMPERE UNIVERSITY OF TECHNOLOGY

Signal characteristics of realistic soundscapes

$$x(t) = \sum_{n} s_n(t) \star h_n(t) + n(t)$$

- Large number of overlapping sources
- Non-stationary source signals $s_n(t)$
- Sources far away from microphones: low SNR, convolutive mixing, time-varying transfer functions $h_n(t)$
- Often only one microphone available

How to extract *useful* information from acoustic scenes?

Categorical latent variables with textual labels

- Examples in everyday sound analysis: "street", "car", "dog", "busy", "quiet" etc.
- Textual category labels: efficient way to present information in human-understandable way
- Estimating categorical variables allow bridging the semantic gap between signal and its semantics
- Categories can chosen to characterize different
 properties depending on target application

 In simple scenarios, a signal can be characteried with one categorical variable

- In simple scenarios, a signal can be characteried with one categorical variable
- E.g. scene classification: street / home / car / park...
- Multiclass classification
- Applications: contextaware devices

- In reality, classes can be overlapping
- Multilabel classification = tagging

- Time-varying classes -> detection
 - Estimating start and end times of classes
- Polyphonic detection: multiple overlapping classes

Example sound event labeling

Potential applications

Scientific challenges

Large variety of different types of sounds

Scientific challenges

Large variety of different types of sounds

Large acoustic diversity within each category

Scientific challenges

Large variety of different types of sounds

Large acoustic diversity within each category

Overlapping sounds, reverberation

 $x(t) = \sum s_n(t) \star h_n(t)$ \boldsymbol{n}

TAMPERE UNIVERSITY OF TECHNOLOGY

Images by edwin.11, Robert Southworth, willc2, sannse, Baminnick, Palatkwapi, Oxyman, Brazzouk, Wistula

The supervised machine learning approach

- Algoritms that find mapping between training examples (audio) and labels (annotations)
- Set of possible sound classes defined in advance
 - Defines the scope of the method
- Need for annotated training material from all the classes

- Audio recordings and its class annotations

Obtaining data

- 1. Real recordings
 - Relatively easy to record
 - Realistic, match with real scenarios
 - Annotations cumbersome (slow & uncertain)
- 2. Synthetic material
 - Mixing of sounds from sample databases
 - Easy to produce large quantities and obtain their annotations
 - Do the results / system translate to real environments?

Real audio: TUT Sound Events 2016 & 2017

- Used in DCASE 2016 & 2017 evaluations
- Environmental sound recordings from home, residential area & street context
- Binaural recordings + video
- About 4 hours of annotated audio
- Manual annotations
 - start and end times of each event
 - labels (verb+noun) based on Wordnet taxonomy
 - manually grouped to classes for supervised classification
 - in total 2000 event instances
- Available online: http://www.cs.tut.fi/sgn/arg/dcase2016/

Supervised learning for polyphonic event detection

- Sources overlapping in time
- Sound events starting and ending at different times
- How to do the supervised learning?

Segment-wise multilabel classification

- Binary encoding of class activities
- Predict the activity of each class in each frame

The multilabel deep neural network (DNN) approach

Training

Multilabel DNN approach

Acoustic features

- Signals typically represented in the spectral domain
- Mel spectrogram (log of energies in mel bands) is a commonly used perceptually motivated representation

Recurrent neural network

Convolutional neural networks

• Layers of convolutions allow learning time-frequency filters to automatically find relevant representations

CNN

- Pooling allows learning shiftinvariant features
- Multiple CNN layers allows learning higherlevel features

What do the CNN filters represent?

 Synthetic input maximizing the activivation of selected neurons

CRNN

- Convolutional recurrent neural network
- Convolutional layers learn features
- Recurrent layers model longer temporal context

Typical CRNN parameters

- 1...4 convolutional layers
- 1...3 recurrent layers
- 96 or 256 neurons / filters per layer
- Frequency max pooling
- CNN activations: rectified linear
- Recurrent neural networks: GRU
- Dropout: 0...0.75
- Detection: binary thresholding (threshold 0.5)
- Cross entropy loss, Adam optimizer

Demonstration

- Training material: 19 hours of audio, binaural recordings
- Material from 10 contexts: basketball game, beach, inside a bus, inside a car, hallway, office, restaurant, shop, street and stadium with track and field events
- Free-label annotations, manually grouped to 61 classes

Θ

CASAbrowser

Scene:	[Hallway #1 [a+v]] +	Play	Pause	Stop	Volume 👘		Position		7:02 /	12:13	VISUALISATION	► EVALUATION	
VIDEO								ACTIVE EVE	INTS				
	ain'			File	1			footste	ps				
		Î	Í										
ŕ													
							10.70						
ενεητ	GRAPH												
Zoom							buckgrounde						
						brea	thing noises •						
							coins keys						
							dishes						
							doore	-					
							else						
							footsteps						
							luughtere						
						DUD	r movement •						
An	notutions						speeche						
TA	SLP2016CRNN						unknowne						
Co	rrect detection						whistling						

CASAbrowser	About
Scene: Street #1 [a+v] + Play Pause Stop Volume Position	0:54 / 11:15 > VISUALISATION > EVALUATION
VIDEO	ACTIVE EVENTS
	speech, traffic, footsteps
EVENT GRAPH	
Zoom	
birde	
brakes squeak e	
bus• care	
car door •	
childe	
coins keys e	
else	-
footsteps	
laughtere	
Annotations road •	
TASI P2016CRNN	
traffice	
Correct detection Unknown	

Objective evaluation with synthetic data

 Synthetic data, 16 classes: Alarms & Sirens, Baby crying, Bird singing, Cat meowing, Crowd applause...

http://www.cs.tut.fi/sgn/arg/taslp2017-crnn-sed/tut-sed-synthetic-2016

REF

CNN

RNN

CRNN

sed_vis

Close

Objective evaluation with synthetic data

Classifier	F-score (framewise)
Binary GMM	40.5%
FNN	49.2%
CNN	52.8%
RNN	59.8%
CRNN	66.4%

http://www.cs.tut.fi/sgn/arg/taslp2017-crnn-sed/tut-sed-synthetic-2016

Case study: acoustic monitoring

 Detection of a target sound over a long period of time (e.g. months)

Existing applications

Automatic captioning of acoustic events in Youtube videos:

Photo from a video of vlogbrothers / CC BY

Existing applications

- Prominent event detection, several suppliers:
 - Baby cry monitoring, window breakage, bog barking monitoring, etc.

DCASE evaluation campaigns

- Previously, each group focused on specific application, with different data
- DCASE = Detection & Classification of Acoustic Scenes and Events
- Public evaluation data challenge:
 - (1) Provide open data that researchers can use
 - (2) Encourage reproducible research
 - (3) Attract new researchers into the field
 - (4) Create reference points for performance comparisons

DCASE over the years

- DCASE 2013
 - 3 Tasks: Acoustic Scenes; Office Live; Office Synthetic
 - 25 challenge submissions, presented at WASPAA 2013
- DCASE 2016
 - 4 Tasks: Acoustic Scenes, Office Synthetic, Real Events, Domestic Tagging
 - 82 challenge submissions, one-day workshop in Budapest
- DCASE 2017
 - 4 Tasks: Acoustic Scenes, Rare Events, Real Events, Large-scale Weak Labels
 - 200 challenge submissions, two-day workshop in Munich
- DCASE 2018
 - 5 Tasks: Acoustic Scenes, Audio Tagging, Bird Detection, Weak Labels, Multichannel Activity Classification

TAMPERE UNIVERSITY OF TECHNOLOGY

DCASE 2017 Task 1: Scene Classification

15 classes:

- Bus
- Cafe/restaurant
- Car
- City center
- Forest path
- Grocery store
- Home
- Lakeside beach
- Library
- Metro station
- Office
- Residential area
- Train
- Tram
- Urban park

Task 1: Results

- 97 Systems / 39 Teams / 129 Authors
- Top system performance 83.3 %, baseline system 61%
- Convolutional neural networks most popular, good performance in general
- Top system used GAN to generate more training examples

Task 2: Detection of rare sound events

- Detecting target sound event within 30-second synthetic mixture
- Target sound events: baby crying, glass breaking, gunshot
- Motivation: Surveillance and smart home applications
- Examples: Alarm the user based on detected hazardous activity

6

Task 2: Results

- 33 Systems (13 Teams / 38 Authors)
- Metrics:
 - event-based Error Rate (ER)
 - F1-score (secondary metric)
 - both calculated with 500ms onset collar

Task 3: Sound Event Detection in Real-life Audio

Task 3: Results

- 36 Systems (13 Teams / 32 Authors)
- Evaluated using segment-based Error Rate (ER) and F1-score (secondary metric), both calculated in one second segments
- Top system ER 0.79, F-score 41.7%

Task 4: Large-Scale Weakly Supervised Sound Event Detection for Smart Cars

Task 4: overall results

- 34 submissions / 9 Teams / 25 Authors (for both subtasks)
- Significant improvement over MLP-based baseline

DCASE 2017: General trends

- Convolutional neural networks were widely used and obtained good results
- Recurrent layers help in detection tasks
- Powerful classifiers are sensitive to training-test mismatch
- Spectral features dominating

DCASE 2018

• 5 tasks:

- 1. Acoustic scene classification
- 2. General-purpose audio tagging of Freesound content with AudioSet labels
- 3. Bird audio detection
- 4. Large-scale weakly labeled semi-supervised sound event detection in domestic environments
- 5. Monitoring of domestic activities based on multi-channel acoustics

http://dcase.community/challenge2018/

DCASE 2018 Schedule

- 30 March: Challenge open, data and baseline methods released
- 30 June: Release of evaluation datasets
- 31 July: Submission deadlines
- 15 September: Challenge results
- 19-20 November: Workshop in Woking, Surrey, UK

http://dcase.community/challenge2018/

Future research directions

- Weakly labeled data
- Opportunistic data collection (online sources)
- Robust classification
- Spatial audio (localization, tracking, separation of sources)
- Audio + video + other modalities

Contributors

 Toni Heittola, Annamaria Mesaros, Emre Cakir, Heikki Huttunen, Giambattista Parascandolo, Konstantinos Drossos, Sharath Adavanne, Eemi Fagerlund, Aku Hiltunen, Archontis Politis

References

T. Virtanen, M. D. Plumbley, D. Ellis (eds). <u>Computational</u> <u>Analysis of Sound Scenes and</u> <u>Events.</u> Springer, 2018.

www.cs.tut.fi/~tuomasv/publications.html

Tuomas Virtanen - Mark D. Plumbley Dan Ellis Editors Computational Analysis of Sound Scenes and Events Springer

Summary

- Estimating categorical variables represented by textual labels allows characterizing complex data
- Sound event detection: research field with several potential applications
- Scientific challenges: robust classification, dealing with overlapping sounds, reverberation
- Practical challenges: acquisition of annotated data
- Convolutional recurrent networks enable learning suitable representations and give state of the art performance
- Public evaluation campaigns allow comparison of different methods and reproducible research

铃