Adaptive Processing in a World of Projections

Sergios Theodoridis¹

Joint work with Konstantinos Slavakis² and Isao Yamada³

¹University of Athens, Greece

²University of Peloponnese, Greece

³Tokyo Institute of Technology, Japan

November 16, 2008

A THE A THE

"OT Δ EIS A GEOMETPHTOS EISI"

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

November 16, 2008 2 / 54

э

"OT Δ EIS AGE Ω METPHTOS EISI"

("Those who do not know geometry are not welcome here")

Plato's Academy of Philosophy

< A

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

November 16, 2008 2 / 54

3 × 4 3

Outline

- The fundamental tool of metric projections in Hilbert spaces.
- The Set Theoretic Estimation approach and multiple intersecting closed convex sets.
- Online classification and regression in Reproducing Kernel Hilbert Spaces (RKHS).
- Incorporating a-priori constraints in the design.
- An algorithmic solution to constrained online learning in RKHS.
- A nonlinear adaptive beamforming application.

A B b 4 B b

Projection onto a Closed Subspace

Theorem

Given a Euclidean \mathbb{R}^N or a Hilbert space \mathcal{H} , the projection of a point f onto a closed subspace M is the point $P_M(f) \in M$ that lies closest to f (Pythagoras Theorem).

< 回 > < 三 > < 三 >

Projection onto a Closed Convex Set

Theorem

Let *C* be a closed convex set in a Hilbert space \mathcal{H} . Then, for each $f \in \mathcal{H}$ there exists a unique $f_* \in C$ such that

$$||f - f_*|| = \min_{g \in C} ||f - g||.$$

Projection onto a Closed Convex Set

Theorem

Let *C* be a closed convex set in a Hilbert space \mathcal{H} . Then, for each $f \in \mathcal{H}$ there exists a unique $f_* \in C$ such that

$$||f - f_*|| = \min_{g \in C} ||f - g||.$$

Definition (Metric Projection Mapping)

Projection is the mapping $P_C : \mathcal{H} \to C : f \mapsto f_*$.

Projection onto a Closed Convex Set

Theorem

Let *C* be a closed convex set in a Hilbert space \mathcal{H} . Then, for each $f \in \mathcal{H}$ there exists a unique $f_* \in C$ such that

$$||f - f_*|| = \min_{g \in C} ||f - g||.$$

Definition (Metric Projection Mapping)

Projection is the mapping $P_C : \mathcal{H} \to C : f \mapsto f_*$.

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

Example (Hyperplane $H := \{g \in \mathcal{H} : \langle g, a \rangle = c\}$)

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

12

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

2

Example (Hyperplane $H := \{g \in \mathcal{H} : \langle g, a \rangle = c\}$)

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

12

Example (Hyperplane $H := \{g \in \mathcal{H} : \langle g, a \rangle = c\}$)

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

2

イロト イロト イヨト イヨト

Example (Halfspace $H^- := \{g \in \mathcal{H} : \langle g, a \rangle \leq c\}$)

$$P_{H^-}(f) = f - \frac{\max\{0, \langle f, a \rangle - c\}}{\|a\|^2} a, \qquad \forall f \in \mathcal{H}.$$

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

November 16, 2008 7 / 54

2

イロト イロト イヨト イヨト

Example (Closed Ball $B[0, \delta] := \{g \in \mathcal{H} : ||g|| \le \delta\}$)

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

æ

$$P_{B[0,\delta]}(f) := \begin{cases} f, & \text{if } \|f\| \le \delta, \\ \frac{\delta}{\|f\|} f, & \text{if } \|f\| > \delta. \end{cases}, \qquad \forall f \in \mathcal{H}.$$

æ

Example (Icecream Cone $K := \{(f, \tau) \in \mathcal{H} \times \mathbb{R} : ||f|| \ge \tau\}$)

Example (Icecream Cone $K := \{(f, \tau) \in \mathcal{H} \times \mathbb{R} : ||f|| \ge \tau\}$)

$$P_K((f,\tau)) = \begin{cases} (f,\tau), & \text{if } \|f\| \leq \tau, \\ (0,0), & \text{if } \|f\| \leq -\tau, \\ \frac{\|f\|+\tau}{2}(\frac{f}{\|f\|},1), & \text{otherwise}, \end{cases} \quad \forall (f,\tau) \in \mathcal{H} \times \mathbb{R}.$$

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

- 31

Definition

Given a closed convex set C and its associated projection mapping P_C , the relaxed projection mapping is defined as

$$T_C(f) := f + \mu(P_C(f) - f), \mu \in (0, 2), \quad \forall f \in \mathcal{H}.$$

Definition

Given a closed convex set C and its associated projection mapping P_C , the relaxed projection mapping is defined as

Definition

Given a closed convex set C and its associated projection mapping P_C , the relaxed projection mapping is defined as

Definition

Given a closed convex set C and its associated projection mapping P_C , the relaxed projection mapping is defined as

A (10) A (10)

Definition

Given a closed convex set C and its associated projection mapping P_C , the relaxed projection mapping is defined as

Remark: The use of the relaxed projection operator with $\mu > 1$ can, potentially, speed up the convergence rate of the algorithms to be presented.

Composition of Projection Mappings: Let M_1 and M_2 be closed subspaces in the Hilbert space \mathcal{H} . For any $f \in \mathcal{H}$, define the sequence of projections:

A B F A B F

< 6 b

Composition of Projection Mappings: Let M_1 and M_2 be closed subspaces in the Hilbert space \mathcal{H} . For any $f \in \mathcal{H}$, define the sequence of projections:

 $P_{M_1}(f).$

A B F A B F

< 6 b

Composition of Projection Mappings: Let M_1 and M_2 be closed subspaces in the Hilbert space \mathcal{H} . For any $f \in \mathcal{H}$, define the sequence of projections:

 $P_{M_2}P_{M_1}(f).$

3 + 4 = +

< A

Composition of Projection Mappings: Let M_1 and M_2 be closed subspaces in the Hilbert space \mathcal{H} . For any $f \in \mathcal{H}$, define the sequence of projections:

 $P_{M_1}P_{M_2}P_{M_1}(f).$

3 + 4 = +

Composition of Projection Mappings: Let M_1 and M_2 be closed subspaces in the Hilbert space \mathcal{H} . For any $f \in \mathcal{H}$, define the sequence of projections:

 $P_{M_2}P_{M_1}P_{M_2}P_{M_1}(f).$

B N A B N

Composition of Projection Mappings: Let M_1 and M_2 be closed subspaces in the Hilbert space \mathcal{H} . For any $f \in \mathcal{H}$, define the sequence of projections:

 $\cdots P_{M_2}P_{M_1}P_{M_2}P_{M_1}(f).$

B N A B N

Composition of Projection Mappings: Let M_1 and M_2 be closed subspaces in the Hilbert space \mathcal{H} . For any $f \in \mathcal{H}$, define the sequence of projections:

 $\cdots P_{M_2}P_{M_1}P_{M_2}P_{M_1}(f).$

Theorem (Von Neumann '33)For any $f \in \mathcal{H}$, $\lim_{n \to \infty} (P_{M_2} P_{M_1})^n (f) = P_{M_1 \cap M_2}(f)$.Sergios Theodoridis (Uni of Athens)Adaptive Processing and ProjectionsNovember 16, 200811/54

Given a finite number of closed convex sets C_1, \ldots, C_q , with $\bigcap_{i=1}^q C_i \neq \emptyset$, let their associated relaxed projection mappings be T_{C_1}, \ldots, T_{C_q} . For any $f_0 \in \mathcal{H}$, this defines the sequence of points

$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \qquad \forall n.$$

(日)

Given a finite number of closed convex sets C_1, \ldots, C_q , with $\bigcap_{i=1}^q C_i \neq \emptyset$, let their associated relaxed projection mappings be T_{C_1}, \ldots, T_{C_q} . For any $f_0 \in \mathcal{H}$, this defines the sequence of points

$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \qquad \forall n.$$

• (10) • (10)

Given a finite number of closed convex sets C_1, \ldots, C_q , with $\bigcap_{i=1}^q C_i \neq \emptyset$, let their associated relaxed projection mappings be T_{C_1}, \ldots, T_{C_q} . For any $f_0 \in \mathcal{H}$, this defines the sequence of points

$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \qquad \forall n.$$

• (10) • (10)

Given a finite number of closed convex sets C_1, \ldots, C_q , with $\bigcap_{i=1}^q C_i \neq \emptyset$, let their associated relaxed projection mappings be T_{C_1}, \ldots, T_{C_q} . For any $f_0 \in \mathcal{H}$, this defines the sequence of points

$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \qquad \forall n.$$

• (10) • (10)

Given a finite number of closed convex sets C_1, \ldots, C_q , with $\bigcap_{i=1}^q C_i \neq \emptyset$, let their associated relaxed projection mappings be T_{C_1}, \ldots, T_{C_q} . For any $f_0 \in \mathcal{H}$, this defines the sequence of points

$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \qquad \forall n.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Given a finite number of closed convex sets C_1, \ldots, C_q , with $\bigcap_{i=1}^q C_i \neq \emptyset$, let their associated relaxed projection mappings be T_{C_1}, \ldots, T_{C_q} . For any $f_0 \in \mathcal{H}$, this defines the sequence of points

$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \qquad \forall n.$$

・ 同 ト ・ ヨ ト ・ ヨ ト
Given a finite number of closed convex sets C_1, \ldots, C_q , with $\bigcap_{i=1}^q C_i \neq \emptyset$, let their associated relaxed projection mappings be T_{C_1}, \ldots, T_{C_q} . For any $f_0 \in \mathcal{H}$, this defines the sequence of points

$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \qquad \forall n.$$

Given a finite number of closed convex sets C_1, \ldots, C_q , with $\bigcap_{i=1}^q C_i \neq \emptyset$, let their associated relaxed projection mappings be T_{C_1}, \ldots, T_{C_q} . For any $f_0 \in \mathcal{H}$, this defines the sequence of points

$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \qquad \forall n.$$

Given a finite number of closed convex sets C_1, \ldots, C_q , with $\bigcap_{i=1}^q C_i \neq \emptyset$, let their associated relaxed projection mappings be T_{C_1}, \ldots, T_{C_q} . For any $f_0 \in \mathcal{H}$, this defines the sequence of points

$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \qquad \forall n.$$

Given a finite number of closed convex sets C_1, \ldots, C_q , with $\bigcap_{i=1}^q C_i \neq \emptyset$, let their associated relaxed projection mappings be T_{C_1}, \ldots, T_{C_q} . For any $f_0 \in \mathcal{H}$, this defines the sequence of points

$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \qquad \forall n.$$

Given a finite number of closed convex sets C_1, \ldots, C_q , with $\bigcap_{i=1}^q C_i \neq \emptyset$, let their associated relaxed projection mappings be T_{C_1}, \ldots, T_{C_q} . For any $f_0 \in \mathcal{H}$, this defines the sequence of points

$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \qquad \forall n.$$

Theorem ([Bregman '65], [Gubin, Polyak, Raik '67]) For any $f \in \mathcal{H}$, $(T_{C_q} \cdots T_{C_1})^n(f) \xrightarrow[n \to \infty]{w} \exists f_* \in \bigcap_{i=1}^q C_i.$

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

Recall

 $T_C(f) := f + \mu(P_C(f) - f)$, with $\mu \in (0, 2)$, and $f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n)$, $\forall n$.

Recall

$$T_C(f) := f + \mu(P_C(f) - f)$$
, with $\mu \in (0, 2)$, and $f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n)$, $\forall n$.

Convex Combination of Projection Mappings [Pierra '84]

Given a finite number of closed convex sets C_1, \ldots, C_q , with $\bigcap_{i=1}^q C_i \neq \emptyset$, let their associated projection mappings be P_{C_1}, \ldots, P_{C_q} . Let also a set of positive constants w_1, \ldots, w_q such that $\sum_{i=1}^q w_i = 1$. Then for any f_0 , the sequence

$$f_{n+1} = f_n + \mu_n (\sum_{i=1}^{q} w_i P_{C_i}(f_n) - f_n), \quad \forall n,$$

Convex combination of projections

Recall

$$T_C(f) := f + \mu(P_C(f) - f)$$
, with $\mu \in (0, 2)$, and $f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n)$, $\forall n$.

Convex Combination of Projection Mappings [Pierra '84]

Recall

$$T_C(f) := f + \mu(P_C(f) - f)$$
, with $\mu \in (0, 2)$, and $f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n)$, $\forall n$.

Convex Combination of Projection Mappings [Pierra '84]

Recall

$$T_C(f) := f + \mu(P_C(f) - f)$$
, with $\mu \in (0, 2)$, and $f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n)$, $\forall n$.

Convex Combination of Projection Mappings [Pierra '84]

Recall

$$T_C(f) := f + \mu(P_C(f) - f)$$
, with $\mu \in (0, 2)$, and $f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n)$, $\forall n$.

Convex Combination of Projection Mappings [Pierra '84]

Recall

$$T_C(f) := f + \mu(P_C(f) - f)$$
, with $\mu \in (0, 2)$, and $f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n)$, $\forall n$.

Convex Combination of Projection Mappings [Pierra '84]

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

Given an infinite number of closed convex sets $(C_n)_{n\geq 0}$, let their associated projection mappings be (P_{C_n}) . For any starting point f_0 , let the sequence

$$f_{n+1} = f_n + \mu_n (\sum_{j \in \{n-q+1,...,n\}} w_j P_{C_j}(f_n) - f_n), \quad \forall n$$

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

Given an infinite number of closed convex sets $(C_n)_{n\geq 0}$, let their associated projection mappings be (P_{C_n}) . For any starting point f_0 , let the sequence

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

Given an infinite number of closed convex sets $(C_n)_{n\geq 0}$, let their associated projection mappings be (P_{C_n}) . For any starting point f_0 , let the sequence

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

Given an infinite number of closed convex sets $(C_n)_{n\geq 0}$, let their associated projection mappings be (P_{C_n}) . For any starting point f_0 , let the sequence

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

Given an infinite number of closed convex sets $(C_n)_{n\geq 0}$, let their associated projection mappings be (P_{C_n}) . For any starting point f_0 , let the sequence

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

Given an infinite number of closed convex sets $(C_n)_{n\geq 0}$, let their associated projection mappings be (P_{C_n}) . For any starting point f_0 , let the sequence

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

Given an infinite number of closed convex sets $(C_n)_{n\geq 0}$, let their associated projection mappings be (P_{C_n}) . For any starting point f_0 , let the sequence

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

Given an infinite number of closed convex sets $(C_n)_{n\geq 0}$, let their associated projection mappings be (P_{C_n}) . For any starting point f_0 , let the sequence

Application to Machine Learning

The Task

Given a set of training samples $x_0, \ldots, x_N \subset \mathbb{R}^m$ and a set of corresponding desired responses y_0, \ldots, y_N , estimate a function $f(\cdot) : \mathbb{R}^m \to \mathbb{R}$ that fits the data.

A (10) A (10)

Application to Machine Learning

The Task

Given a set of training samples $x_0, \ldots, x_N \subset \mathbb{R}^m$ and a set of corresponding desired responses y_0, \ldots, y_N , estimate a function $f(\cdot) : \mathbb{R}^m \to \mathbb{R}$ that fits the data.

The Expected / Empirical Risk Function approach

Estimate *f* so that the expected risk based on a loss function $\ell(\cdot, \cdot)$ is minimized:

$$\min_{f} \mathsf{E}\{\ell(f(\boldsymbol{x}), y)\},\$$

or, in practice, the empirical risk is minimized:

$$\min_{f} \sum_{n=0}^{N} \ell(f(\boldsymbol{x}_n), y_n).$$

3

Loss Functions

Example (Classification)

For a given margin $\rho \ge 0$, and $y_n \in \{+1, -1\}$, $\forall n$, define the soft margin loss functions:

$$\ell(f(\boldsymbol{x}_n), y_n) := \max\{0, \rho - y_n f(\boldsymbol{x}_n)\}, \quad \forall n.$$

Loss Functions

Example (Regression)

The square loss functions:

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Main Drawbacks of the Risk Optimization Approach

Most often, in practice, the choice of the cost is dictated not by physical reasoning but by the computational tractability.

Main Drawbacks of the Risk Optimization Approach

Most often, in practice, the choice of the cost is dictated not by physical reasoning but by the computational tractability.

The existence of a-priori information in the form of constraints makes the task even more difficult.

The goal here is to have a solution that is in agreement with all the available information, that resides in the data as well as in the available a-priori information.

A B F A B F

The goal here is to have a solution that is in agreement with all the available information, that resides in the data as well as in the available a-priori information.

The Means

• Each piece of information, associated with the training pair (x_n, y_n) , is represented in the solution space by a set.

< 回 > < 三 > < 三 >

The goal here is to have a solution that is in agreement with all the available information, that resides in the data as well as in the available a-priori information.

The Means

- Each piece of information, associated with the training pair (x_n, y_n) , is represented in the solution space by a set.
- Each piece of a-priori information, i.e., each constraint, is also represented by a set.

The goal here is to have a solution that is in agreement with all the available information, that resides in the data as well as in the available a-priori information.

The Means

- Each piece of information, associated with the training pair (x_n, y_n) , is represented in the solution space by a set.
- Each piece of a-priori information, i.e., each constraint, is also represented by a set.
- The intersection of all these sets constitutes the family of solutions.

The goal here is to have a solution that is in agreement with all the available information, that resides in the data as well as in the available a-priori information.

The Means

- Each piece of information, associated with the training pair (x_n, y_n) , is represented in the solution space by a set.
- Each piece of a-priori information, i.e., each constraint, is also represented by a set.
- The intersection of all these sets constitutes the family of solutions.
- The family of solutions is known as the feasibility set.

$$f \in \bigcap_n C_n \subset \mathcal{H}.$$

November 16, 2008 20 / 54

The Setting

Let the training data set $(x_n, y_n) \subset \mathbb{R}^m \times \{+1, -1\}, n = 0, 1, \dots$ Assume the two class task,

$$\begin{cases} y_n = +1, & \boldsymbol{x}_n \in W_1, \\ y_n = -1, & \boldsymbol{x}_n \in W_2. \end{cases}$$

Assume linear separable classes.

< 回 > < 三 > < 三 >

The Setting

Let the training data set $(x_n, y_n) \subset \mathbb{R}^m \times \{+1, -1\}, n = 0, 1, \dots$ Assume the two class task,

$$\begin{cases} y_n = +1, & \boldsymbol{x}_n \in W_1, \\ y_n = -1, & \boldsymbol{x}_n \in W_2. \end{cases}$$

Assume linear separable classes.

The Goal (for $\rho = 0$)

э

ヘロト 人間 ト イヨト イヨト

The Setting

Let the training data set $(x_n, y_n) \subset \mathbb{R}^m \times \{+1, -1\}, n = 0, 1, \dots$ Assume the two class task,

$$\begin{cases} y_n = +1, & \boldsymbol{x}_n \in W_1, \\ y_n = -1, & \boldsymbol{x}_n \in W_2. \end{cases}$$

Assume linear separable classes.

The Goal (for $\rho = 0$)

Find
$$f(\boldsymbol{x}) = \boldsymbol{w}^t \boldsymbol{x} + b$$
, so that
 $\begin{cases} \boldsymbol{w}^t \boldsymbol{x}_n + b \ge 0, & \text{if } y_n = +1, \\ \boldsymbol{w}^t \boldsymbol{x}_n + b \le 0, & \text{if } y_n = -1. \end{cases}$

э

ヘロト 人間 ト イヨト イヨト

The Setting

Let the training data set $(x_n, y_n) \subset \mathbb{R}^m \times \{+1, -1\}, n = 0, 1, \dots$ Assume the two class task,

$$\begin{cases} y_n = +1, & \boldsymbol{x}_n \in W_1, \\ y_n = -1, & \boldsymbol{x}_n \in W_2. \end{cases}$$

Assume linear separable classes.

The Goal (for $\rho = 0$)

Find
$$f(\boldsymbol{x}) = \boldsymbol{w}^t \boldsymbol{x} + b$$
, so that

$$\begin{cases} \boldsymbol{w}^t \boldsymbol{x}_n + b \ge 0, & \text{if } y_n = +1, \\ \boldsymbol{w}^t \boldsymbol{x}_n + b \le 0, & \text{if } y_n = -1. \end{cases}$$
Hereafter, $(\boldsymbol{w} \leftarrow \begin{bmatrix} \boldsymbol{w} \\ b \end{bmatrix}, \quad \boldsymbol{x}_n \leftarrow \begin{bmatrix} \boldsymbol{x}_n \\ 1 \end{bmatrix})$.

э

A (10) A (10)
Set Theoretic Estimation Approach to Classification

The Piece of Information

Find all those \boldsymbol{w} so that $y_n \boldsymbol{w}^t \boldsymbol{x}_n \geq 0$, $n = 0, 1, \dots$

3

イロト 不得 トイヨト イヨト

Set Theoretic Estimation Approach to Classification

The Piece of Information

Find all those
$$\boldsymbol{w}$$
 so that $y_n \boldsymbol{w}^t \boldsymbol{x}_n \geq 0, \quad n = 0, 1, \dots$

The Equivalent Set

Sergios Theodoridis (Uni of Athens)

э

For each pair (\boldsymbol{x}_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$\boldsymbol{w}_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

A (10) > A (10) > A (10)

For each pair (\boldsymbol{x}_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$\boldsymbol{w}_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

Each H_n^+ is a convex set.

Start from an arbitrary initial w₀.

For each pair (\boldsymbol{x}_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$\boldsymbol{w}_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

- Start from an arbitrary initial w₀.
- Keep projecting as each H_n⁺ is formed.

For each pair (\boldsymbol{x}_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$\boldsymbol{w}_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

Each H_n^+ is a convex set.

- Start from an arbitrary initial w₀.
- Keep projecting as each H⁺_n is formed.

•
$$P_{H_n^+}(\boldsymbol{w}) = \boldsymbol{w} - \frac{\min\{0, \langle \boldsymbol{w}, y_n \boldsymbol{x}_n \rangle\}}{\|\boldsymbol{x}_n\|^2} y_n \boldsymbol{x}_n,$$

 $\forall \boldsymbol{w} \in \mathcal{H}.$

Sergios Theodoridis (Uni of Athens)

For each pair (\boldsymbol{x}_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$\boldsymbol{w}_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

Each H_n^+ is a convex set.

- Start from an arbitrary initial w₀.
- Keep projecting as each H⁺_n is formed.

 $\boldsymbol{\hat{w}}_{n-1}$

•
$$P_{H_n^+}(\boldsymbol{w}) = \boldsymbol{w} - \frac{\min\{0, \langle \boldsymbol{w}, y_n \boldsymbol{x}_n \rangle\}}{\|\boldsymbol{x}_n\|^2} y_n \boldsymbol{x}_n,$$

 $\forall \boldsymbol{w} \in \mathcal{H}.$

For each pair (\boldsymbol{x}_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$\boldsymbol{w}_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

- Start from an arbitrary initial w₀.
- Keep projecting as each H⁺_n is formed.

•
$$P_{H_n^+}(\boldsymbol{w}) = \boldsymbol{w} - \frac{\min\{0, \langle \boldsymbol{w}, y_n \boldsymbol{x}_n \rangle\}}{\|\boldsymbol{x}_n\|^2} y_n \boldsymbol{x}_n,$$

 $\forall \boldsymbol{w} \in \mathcal{H}.$

For each pair (\boldsymbol{x}_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$\boldsymbol{w}_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

- Start from an arbitrary initial w₀.
- Keep projecting as each H⁺_n is formed.

•
$$P_{H_n^+}(\boldsymbol{w}) = \boldsymbol{w} - \frac{\min\{0, \langle \boldsymbol{w}, y_n \boldsymbol{x}_n \rangle\}}{\|\boldsymbol{x}_n\|^2} y_n \boldsymbol{x}_n,$$

 $\forall \boldsymbol{w} \in \mathcal{H}.$

For each pair (\boldsymbol{x}_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$\boldsymbol{w}_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

Each H_n^+ is a convex set.

- Start from an arbitrary initial w₀.
- Keep projecting as each H⁺_n is formed.

•
$$P_{H_n^+}(\boldsymbol{w}) = \boldsymbol{w} - \frac{\min\{0, \langle \boldsymbol{w}, y_n \boldsymbol{x}_n \rangle\}}{\|\boldsymbol{x}_n\|^2} y_n \boldsymbol{x}_n,$$

 $\forall \boldsymbol{w} \in \mathcal{H}.$

Adaptive Processing and Projections

For each pair (\boldsymbol{x}_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$\boldsymbol{w}_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

- Start from an arbitrary initial w₀.
- Keep projecting as each H⁺_n is formed.

•
$$P_{H_n^+}(\boldsymbol{w}) = \boldsymbol{w} - \frac{\min\{0, \langle \boldsymbol{w}, y_n \boldsymbol{x}_n \rangle\}}{\|\boldsymbol{x}_n\|^2} y_n \boldsymbol{x}_n,$$

 $\forall \boldsymbol{w} \in \mathcal{H}.$

For each pair (\boldsymbol{x}_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$\boldsymbol{w}_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

- Start from an arbitrary initial w_0 .
- Keep projecting as each H⁺_n is formed.

•
$$P_{H_n^+}(\boldsymbol{w}) = \boldsymbol{w} - \frac{\min\{0, \langle \boldsymbol{w}, y_n \boldsymbol{x}_n \rangle\}}{\|\boldsymbol{x}_n\|^2} y_n \boldsymbol{x}_n,$$

 $\forall \boldsymbol{w} \in \mathcal{H}.$

For each pair (\boldsymbol{x}_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$\boldsymbol{w}_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

- Start from an arbitrary initial w₀.
- Keep projecting as each H⁺_n is formed.

•
$$P_{H_n^+}(\boldsymbol{w}) = \boldsymbol{w} - \frac{\min\{0, \langle \boldsymbol{w}, y_n \boldsymbol{x}_n \rangle\}}{\|\boldsymbol{x}_n\|^2} y_n \boldsymbol{x}_n,$$

 $\forall \boldsymbol{w} \in \mathcal{H}.$

$$w_{n+1} := w_n + \mu_n (\sum_{j \in \{n-q+1,...,n\}} \omega_j^{(n)} P_{H_n^+}(w_n) - w_n),$$

 $\mu_n \in [0, 2\mathcal{M}_n], \text{and}$

$$\mathcal{M}_{n} := \begin{cases} \frac{\sum_{j \in \{n-q+1,...,n\}} \omega_{j}^{(n)} \|P_{H_{n}^{+}}(\boldsymbol{w}_{n}) - \boldsymbol{w}_{n}\|^{2}}{\|\sum_{j \in \{n-q+1,...,n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}(\boldsymbol{w}_{n}) - \boldsymbol{w}_{n}\|^{2}}, & \text{if } \boldsymbol{w}_{n} \notin \bigcap_{j \in \{n-q+1,...,n\}} H_{n}^{+}, \\ 1, & \text{otherwise.} \end{cases}$$

æ

$$w_{n+1} := w_n + \mu_n (\sum_{j \in \{n-q+1,...,n\}} \omega_j^{(n)} P_{H_n^+}(w_n) - w_n),$$

 $\mu_n \in [0, 2\mathcal{M}_n], \text{and}$

$$\mathcal{M}_{n} := \begin{cases} \frac{\sum_{j \in \{n-q+1,...,n\}} \omega_{j}^{(n)} \|P_{H_{n}^{+}}(\boldsymbol{w}_{n}) - \boldsymbol{w}_{n}\|^{2}}{\|\sum_{j \in \{n-q+1,...,n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}(\boldsymbol{w}_{n}) - \boldsymbol{w}_{n}\|^{2}}, & \text{if } \boldsymbol{w}_{n} \notin \bigcap_{j \in \{n-q+1,...,n\}} H_{n}^{+}, \\ 1, & \text{otherwise.} \end{cases}$$

 \boldsymbol{w}_n

æ

$$w_{n+1} := w_n + \mu_n (\sum_{j \in \{n-q+1,...,n\}} \omega_j^{(n)} P_{H_n^+}(w_n) - w_n),$$

$$\begin{split} \mu_n &\in [0, 2\mathcal{M}_n], \text{and} \\ \mathcal{M}_n &:= \begin{cases} \frac{\sum_{j \in \{n-q+1, \dots, n\}} \omega_j^{(n)} \|P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}{\|\sum_{j \in \{n-q+1, \dots, n\}} \omega_j^{(n)} P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}, & \text{if } \boldsymbol{w}_n \notin \bigcap_{j \in \{n-q+1, \dots, n\}} H_n^+, \\ 1, & \text{otherwise.} \end{cases} \end{split}$$

$$w_{n+1} := w_n + \mu_n (\sum_{j \in \{n-q+1,...,n\}} \omega_j^{(n)} P_{H_n^+}(w_n) - w_n),$$

 $\mu_n \in [0, 2\mathcal{M}_n], \text{and}$ (m)

$$\mathcal{M}_{n} := \begin{cases} \frac{\sum_{j \in \{n-q+1,\dots,n\}} \omega_{j}^{(n)} \|P_{H_{n}^{+}}(\boldsymbol{w}_{n}) - \boldsymbol{w}_{n}\|^{2}}{\|\sum_{j \in \{n-q+1,\dots,n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}(\boldsymbol{w}_{n}) - \boldsymbol{w}_{n}\|^{2}}, & \text{if } \boldsymbol{w}_{n} \notin \bigcap_{j \in \{n-q+1,\dots,n\}} H_{n}^{+}, \\ 1, & \text{otherwise.} \end{cases}$$

E

$$w_{n+1} := w_n + \mu_n (\sum_{j \in \{n-q+1,...,n\}} \omega_j^{(n)} P_{H_n^+}(w_n) - w_n),$$

 $\mu_n \in [0, 2\mathcal{M}_n], \text{and}$

$$\mathcal{M}_{n} := \begin{cases} \frac{\sum_{j \in \{n-q+1,...,n\}} \omega_{j}^{(n)} \|P_{H_{n}^{+}}(\boldsymbol{w}_{n}) - \boldsymbol{w}_{n}\|^{2}}{\|\sum_{j \in \{n-q+1,...,n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}(\boldsymbol{w}_{n}) - \boldsymbol{w}_{n}\|^{2}}, & \text{if } \boldsymbol{w}_{n} \notin \bigcap_{j \in \{n-q+1,...,n\}} H_{n}^{+}, \\ 1, & \text{otherwise.} \end{cases}$$

Sergios Theodoridis (Uni of Athens)

æ

$$w_{n+1} := w_n + \mu_n (\sum_{j \in \{n-q+1,...,n\}} \omega_j^{(n)} P_{H_n^+}(w_n) - w_n),$$

 $\mu_n \in [0, 2\mathcal{M}_n], \text{and}$

$$\mathcal{M}_{n} := \begin{cases} \frac{\sum_{j \in \{n-q+1,...,n\}} \omega_{j}^{(n)} \|P_{H_{n}^{+}}(\boldsymbol{w}_{n}) - \boldsymbol{w}_{n}\|^{2}}{\|\sum_{j \in \{n-q+1,...,n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}(\boldsymbol{w}_{n}) - \boldsymbol{w}_{n}\|^{2}}, & \text{if } \boldsymbol{w}_{n} \notin \bigcap_{j \in \{n-q+1,...,n\}} H_{n}^{+}, \\ 1, & \text{otherwise.} \end{cases}$$

Sergios Theodoridis (Uni of Athens)

æ

$$w_{n+1} := w_n + \mu_n (\sum_{j \in \{n-q+1,...,n\}} \omega_j^{(n)} P_{H_n^+}(w_n) - w_n),$$

 $\mu_n \in [0, 2\mathcal{M}_n], \text{ and }$

$$\mathcal{M}_{n} := \begin{cases} \frac{\sum_{j \in \{n-q+1,\dots,n\}} \omega_{j}^{(n)} \|P_{H_{n}^{+}}(\boldsymbol{w}_{n}) - \boldsymbol{w}_{n}\|^{2}}{\|\sum_{j \in \{n-q+1,\dots,n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}(\boldsymbol{w}_{n}) - \boldsymbol{w}_{n}\|^{2}}, & \text{if } \boldsymbol{w}_{n} \notin \bigcap_{j \in \{n-q+1,\dots,n\}} H_{n}^{+}, \\ 1, & \text{otherwise.} \end{cases}$$

$$w_{n+1} := w_n + \mu_n (\sum_{j \in \{n-q+1,...,n\}} \omega_j^{(n)} P_{H_n^+}(w_n) - w_n),$$

 $\mu_n \in [0, 2\mathcal{M}_n], \text{and}$ $\mathcal{M}_n := \begin{cases} \frac{\sum_{j \in \{n-q+1, \dots, n\}} \omega_j^{(n)} \|P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}{\|\sum_{j \in \{n-q+1, \dots, n\}} \omega_j^{(n)} P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}, & \text{if} \\ 1, & \text{ot} \end{cases}$

if
$$\boldsymbol{w}_n \notin \bigcap_{j \in \{n-q+1,...,n\}} H_n^+,$$

otherwise.

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

Transfer the Problem into High Dimensional Spaces

Theorem (Cover '65)

The probability of linearly separating any two subgroups of a given finite number of data approaches unity as the dimension of the space, where classification is carried out, increases.

E > 4 E >

Definition

Consider a Hilbert space \mathcal{H} of functions $f : \mathbb{R}^m \to \mathbb{R}$.

-

イロト 不得 トイヨト イヨト

Definition

Consider a Hilbert space \mathcal{H} of functions $f : \mathbb{R}^m \to \mathbb{R}$. Assume there exists a kernel function $\kappa(\cdot, \cdot) : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ such that

3

イロト 不得 トイヨト イヨト

Definition

Consider a Hilbert space \mathcal{H} of functions $f : \mathbb{R}^m \to \mathbb{R}$. Assume there exists a kernel function $\kappa(\cdot, \cdot) : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ such that

•
$$\kappa({m x},\cdot)\in {\mathcal H},\,orall {m x}\in {\mathbb R}^m,$$

Definition

Consider a Hilbert space \mathcal{H} of functions $f : \mathbb{R}^m \to \mathbb{R}$. Assume there exists a kernel function $\kappa(\cdot, \cdot) : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ such that

•
$$\kappa({m x},\cdot)\in {\mathcal H},\,orall {m x}\in {\mathbb R}^m$$

• $\langle f, \kappa(\boldsymbol{x}, \cdot) \rangle = f(\boldsymbol{x}), \forall \boldsymbol{x} \in \mathbb{R}^m, \forall f \in \mathcal{H}, \text{ (reproducing property).}$

Definition

Consider a Hilbert space \mathcal{H} of functions $f : \mathbb{R}^m \to \mathbb{R}$. Assume there exists a kernel function $\kappa(\cdot, \cdot) : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ such that

•
$$\kappa({m x},\cdot)\in {\mathcal H}$$
, $orall {m x}\in {\mathbb R}^m$

• $\langle f, \kappa(\boldsymbol{x}, \cdot) \rangle = f(\boldsymbol{x}), \forall \boldsymbol{x} \in \mathbb{R}^m, \forall f \in \mathcal{H}, \text{ (reproducing property).}$

Then \mathcal{H} is called a Reproducing Kernel Hilbert Space (RKHS).

A (10) A (10)

Definition

Consider a Hilbert space \mathcal{H} of functions $f : \mathbb{R}^m \to \mathbb{R}$. Assume there exists a kernel function $\kappa(\cdot, \cdot) : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ such that

•
$$\kappa({m x},\cdot)\in {\mathcal H}$$
, $orall {m x}\in {\mathbb R}^m$

• $\langle f, \kappa(\boldsymbol{x}, \cdot) \rangle = f(\boldsymbol{x}), \forall \boldsymbol{x} \in \mathbb{R}^{m}, \forall f \in \mathcal{H}, \text{ (reproducing property).}$

Then \mathcal{H} is called a Reproducing Kernel Hilbert Space (RKHS).

Properties

Definition

Consider a Hilbert space \mathcal{H} of functions $f : \mathbb{R}^m \to \mathbb{R}$. Assume there exists a kernel function $\kappa(\cdot, \cdot) : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ such that

•
$$\kappa({m x},\cdot)\in {\mathcal H}$$
, $\forall {m x}\in {\mathbb R}^m$

• $\langle f, \kappa(\boldsymbol{x}, \cdot) \rangle = f(\boldsymbol{x}), \forall \boldsymbol{x} \in \mathbb{R}^m, \forall f \in \mathcal{H}, \text{ (reproducing property).}$

Then \mathcal{H} is called a Reproducing Kernel Hilbert Space (RKHS).

Properties

• Kernel Trick: $\langle \kappa(\boldsymbol{x},\cdot),\kappa(\boldsymbol{y},\cdot)\rangle = \kappa(\boldsymbol{x},\boldsymbol{y}).$

Definition

Consider a Hilbert space \mathcal{H} of functions $f : \mathbb{R}^m \to \mathbb{R}$. Assume there exists a kernel function $\kappa(\cdot, \cdot) : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ such that

•
$$\kappa({m x},\cdot)\in {\mathcal H}$$
, $\forall {m x}\in {\mathbb R}^m$

• $\langle f, \kappa(\boldsymbol{x}, \cdot) \rangle = f(\boldsymbol{x}), \forall \boldsymbol{x} \in \mathbb{R}^m, \forall f \in \mathcal{H}, \text{ (reproducing property).}$

Then \mathcal{H} is called a Reproducing Kernel Hilbert Space (RKHS).

Properties

- Kernel Trick: $\langle \kappa(\boldsymbol{x},\cdot),\kappa(\boldsymbol{y},\cdot)\rangle = \kappa(\boldsymbol{x},\boldsymbol{y}).$
- $\mathcal{H} = \operatorname{clos}\{\sum_{n=0}^{N} \gamma_n \kappa(\boldsymbol{x}_n, \cdot) : \forall \boldsymbol{x}_n \in \mathbb{R}^m, \forall \gamma_n, \forall N\}.$

Classification in RKHS

The Goal

Let the training data set $(\boldsymbol{x}_n, y_n) \subset \mathbb{R}^m imes \{+1, -1\}, n = 0, 1, \dots$

•
$$\boldsymbol{x}_n\mapsto\kappa(\boldsymbol{x}_n,\cdot)$$
,

Sergios Theodoridis (Uni of Athens)

3

Classification in RKHS

The Goal

Let the training data set $(\boldsymbol{x}_n, y_n) \subset \mathbb{R}^m imes \{+1, -1\}, n = 0, 1, \dots$

- $\boldsymbol{x}_n \mapsto \kappa(\boldsymbol{x}_n, \cdot)$,
- Find $f \in \mathcal{H}$ and $b \in \mathbb{R}$ so that

$$y_n(f(\boldsymbol{x}_n) + b) = y_n(\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle + b) \ge 0, \qquad \forall n$$

The Piece of Information

Find all those f so that $\langle f, y_n \kappa(\boldsymbol{x}_n, \cdot) \rangle \ge 0, \quad n = 0, 1, \dots$

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

November 16, 2008 28 / 54

2

The Piece of Information

Find all those f so that $\langle f, y_n \kappa(\boldsymbol{x}_n, \cdot) \rangle \geq 0, \quad n = 0, 1, \dots$

The Equivalence Set

Sergios Theodoridis (Uni of Athens)

イロト 不得 トイヨト イヨト 二日

Let the index set $\mathcal{J}_n := \{n - q + 1, \dots, n\}$. Also the weights $\omega_j^{(n)} \ge 0$ such that $\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} = 1$. For $f_0 \in \mathcal{H}$,

$$f_{n+1} := f_n + \mu_n (\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n), \quad \forall n \ge 0,$$

where the extrapolation coefficient $\mu_n \in [0, 2\mathcal{M}_n]$ with

$$\mathcal{M}_n := \begin{cases} \frac{\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} \|P_{H_j^+}(f_n) - f_n\|^2}{\|\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n\|^2}, & \text{if } f_n \notin \bigcap_{j \in \mathcal{J}_n} H_j^+, \\ 1, & \text{otherwise.} \end{cases}$$

Sergios Theodoridis (Uni of Athens)

Theorem

By mathematical induction on the previous algorithmic procedure, for each index *n*, there exist $(\gamma_i^{(n)})$ such that

$$f_n := \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot).$$

3 + 4 = +
Recall that as time goes by:

$$f_n := \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot).$$

æ

A (10) A (10) A (10)

Recall that as time goes by:

$$f_n := \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot).$$

Memory and computational load grows unbounded as $n \to \infty$!

3 1 4 3

4 6 1 1 4

Recall that as time goes by:

$$f_n := \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot).$$

Memory and computational load grows unbounded as $n \to \infty$!

To cope with the problem, we additionally constrain the norm of f_n by a predefined $\delta > 0$ [Slavakis, Theodoridis, Yamada '08]:

 $(\forall n \ge 0) \ f_n \in \mathcal{B} := \{f \in \mathcal{H} : \|f\| \le \delta\} : \text{ Closed Ball.}$

イロト イヨト イヨト イヨト

Recall that as time goes by:

$$f_n := \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot).$$

Memory and computational load grows unbounded as $n \to \infty$!

To cope with the problem, we additionally constrain the norm of f_n by a predefined $\delta > 0$ [Slavakis, Theodoridis, Yamada '08]:

 $(\forall n \ge 0) \ f_n \in \mathcal{B} := \{f \in \mathcal{H} : \|f\| \le \delta\} : \text{ Closed Ball.}$

Goal

Thus, we are looking for a classifier $f \in \mathcal{H}$ such that

$$f \in \mathcal{B} \cap (\bigcap_n H_n^+).$$

$$f_{n+1} := P_{\mathcal{B}} \left(f_n + \mu_n \left(\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n \right) \right), \qquad \forall n \in \mathbb{Z}_{\geq 0}.$$
$$\mu_n \in [0, 2\mathcal{M}_n], \quad \mathcal{M}_n \geq 1,$$

æ

イロト イヨト イヨト イヨト

$$f_{n+1} := P_{\mathcal{B}} \left(f_n + \mu_n \left(\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n \right) \right), \qquad \forall n \in \mathbb{Z}_{\geq 0}.$$
$$\mu_n \in [0, 2\mathcal{M}_n], \quad \mathcal{M}_n \geq 1,$$

 f_n •

æ

$$f_{n+1} := P_{\mathcal{B}} \left(f_n + \mu_n (\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n) \right), \quad \forall n \in \mathbb{Z}_{\geq 0}.$$

$$\mu_n \in [0, 2\mathcal{M}_n], \quad \mathcal{M}_n \geq 1,$$

$$f_n \cdot$$

$$H_{n-1}^+$$

æ

イロト イヨト イヨト イヨト

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

November 16, 2008 32 / 54

æ

イロト イヨト イヨト イヨト

$$f_{n+1} := P_{\mathcal{B}} \left(f_n + \mu_n (\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n) \right), \qquad \forall n \in \mathbb{Z}_{\geq 0}.$$
$$\mu_n \in [0, 2\mathcal{M}_n], \quad \mathcal{M}_n \geq 1,$$

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

$$f_{n+1} := P_{\mathcal{B}} \left(f_n + \mu_n (\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n) \right), \qquad \forall n \in \mathbb{Z}_{\geq 0}.$$
$$\mu_n \in [0, 2\mathcal{M}_n], \quad \mathcal{M}_n \geq 1,$$

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

November 16, 2008 3

・ロト ・ 四ト ・ ヨト ・ ヨト

32 / 54

æ

$$f_{n+1} := P_{\mathcal{B}}\left(f_n + \mu_n(\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n)\right), \quad \forall n \in \mathbb{Z}_{\geq 0}.$$
$$\mu_n \in [0, 2\mathcal{M}_n], \quad \mathcal{M}_n \geq 1,$$

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

November 16, 2008 32 / 54

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

$$f_{n+1} := P_{\mathcal{B}}\left(f_n + \mu_n(\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n)\right), \quad \forall n \in \mathbb{Z}_{\geq 0}.$$
$$\mu_n \in [0, 2\mathcal{M}_n], \quad \mathcal{M}_n \geq 1,$$

Remark: It can be shown that this scheme leads to a forgetting factor effect, as in adaptive filtering!

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

November 16, 2008 32 / 54

Regression in RKHS

The linear ϵ -insensitive loss function case

$$\ell(x) := \max\{0, |x| - \epsilon\}, x \in \mathbb{R}.$$

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

November 16, 2008 33 / 54

æ

Set Theoretic Estimation Approach to Regression

The Piece of Information

Given $(\boldsymbol{x}_n, y_n) \in \mathbb{R}^m \times \mathbb{R}$, find $f \in \mathcal{H}$ such that

$$|\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n| \le \epsilon, \qquad \forall n.$$

3

< 回 > < 回 > < 回 >

Set Theoretic Estimation Approach to Regression

The Piece of Information

Given $(\boldsymbol{x}_n, y_n) \in \mathbb{R}^m \times \mathbb{R}$, find $f \in \mathcal{H}$ such that

$$|\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n| \le \epsilon, \quad \forall n.$$

The Equivalence Set (Hyperslab)

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

Projection onto a Hyperslab

$$P_{S_n}(f) = f + \beta \kappa(\boldsymbol{x}_n, \cdot), \forall f \in \mathcal{H},$$

where

$$\beta := \begin{cases} \frac{y_n - \langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - \epsilon}{\kappa(\boldsymbol{x}_n, \boldsymbol{x}_n)}, & \text{if } \langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n < -\epsilon, \\ 0, & \text{if } |\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n| \le \epsilon, \\ -\frac{\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n - \epsilon}{\kappa(\boldsymbol{x}_n, \boldsymbol{x}_n)}, & \text{if } \langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n > \epsilon. \end{cases}$$

æ

イロト イロト イヨト イヨト

Projection onto a Hyperslab

$$P_{S_n}(f) = f + \beta \kappa(\boldsymbol{x}_n, \cdot), \forall f \in \mathcal{H},$$

where

$$\beta := \begin{cases} \frac{y_n - \langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - \epsilon}{\kappa(\boldsymbol{x}_n, \boldsymbol{x}_n)}, & \text{ if } \langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n < -\epsilon, \\ 0, & \text{ if } |\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n| \le \epsilon, \\ -\frac{\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n - \epsilon}{\kappa(\boldsymbol{x}_n, \boldsymbol{x}_n)}, & \text{ if } \langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n > \epsilon. \end{cases}$$

The feasibility set

For each pair (x_n, y_n) , form the equivalent hyperslab S_n , and

find
$$f_* \in \bigcap_n S_n$$
.

3

Algorithm for the Online Regression in RKHS

Let the index set $\mathcal{J}_n := \{n - q + 1, \dots, n\}$. Also the weights $\omega_j^{(n)} \ge 0$ such that $\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} = 1$. For $f_0 \in \mathcal{H}$,

$$f_{n+1} := f_n + \mu_n (\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{S_j}(f_n) - f_n), \quad \forall n \ge 0,$$

where the extrapolation coefficient $\mu_n \in [0, 2\mathcal{M}_n]$ with

$$\mathcal{M}_n := \begin{cases} \frac{\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} \|P_{S_j}(f_n) - f_n\|^2}{\|\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{S_j}(f_n) - f_n\|^2}, & \text{if } f_n \notin \bigcap_{j \in \mathcal{J}_n} S_j, \\ 1, & \text{otherwise.} \end{cases}$$

Sergios Theodoridis (Uni of Athens)

 f_n

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

November 16, 2008 37 / 54

æ

イロト イヨト イヨト イヨト

Example (Affine Set)

An affine set V is the translation of a closed subspace M, i.e., V := v + M, where $v \in V$.

$$P_V(f) = v + P_M(f - v), \forall f \in \mathcal{H}.$$

Example (Affine Set)

An affine set V is the translation of a closed subspace M, i.e., V := v + M, where $v \in V$.

$$P_V(f) = v + P_M(f - v), \forall f \in \mathcal{H}.$$

For example, if $M = \operatorname{span}{\{\tilde{h}_1, \ldots, \tilde{h}_p\}}$, then

$$P_V(f) = v + [\tilde{h}_1, \dots, \tilde{h}_p] \boldsymbol{G}^{\dagger} \begin{bmatrix} \langle f - v, \tilde{h}_1 \rangle \\ \vdots \\ \langle f - v, \tilde{h}_p \rangle \end{bmatrix}, \quad \forall f \in \mathcal{H},$$

where the $p \times p$ matrix G, with $G_{ij} := \langle \tilde{h}_i, \tilde{h}_j \rangle$, is a Gram matrix, and G^{\dagger} is the Moore-Penrose pseudoinverse of G. The notation $[\tilde{h}_1, \ldots, \tilde{h}_p] \boldsymbol{\gamma} := \sum_{i=1}^p \gamma_i \tilde{h}_i$, for any *p*-dimensional vector $\boldsymbol{\gamma}$.

Example (Icecream Cone)

Find
$$f \in \mathcal{H}$$
 such that $\langle f, h \rangle \geq \gamma, \forall h \in B[\tilde{h}, \delta]$:
(Robustness is desired).

Example (Icecream Cone)

Find
$$f \in \mathcal{H}$$
 such that $\langle f, h \rangle \geq \gamma, \ \forall h \in B[\tilde{h}, \delta]$:
(Robustness is desired).

If Γ is the set of all such solutions, then

Example (Icecream Cone)

Find $f \in \mathcal{H}$ such that $\langle f, h \rangle \geq \gamma$, $\forall h \in B[\tilde{h}, \delta]$: (Robustness is desired).

If Γ is the set of all such solutions, then

Find a point in $K \cap \Pi$, *K*: an icecream cone, Π : a hyperplane.

Given (x_n, y_n) , find an $f \in \mathcal{H}$ such that [Slavakis, Theodoridis '07 and '08]

 $|\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n| \leq \epsilon$ subject to

Given (x_n, y_n) , find an $f \in \mathcal{H}$ such that [Slavakis, Theodoridis '07 and '08]

 $|\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n| \le \epsilon$ subject to $f \in V$ (Affine constraint), and / or

A (10) A (10)

Given (x_n, y_n) , find an $f \in \mathcal{H}$ such that [Slavakis, Theodoridis '07 and '08]

$$\begin{split} |\langle f,\kappa(\pmb{x}_n,\cdot)
angle - y_n| &\leq \epsilon \quad \text{subject to} \\ f \in V \quad \text{(Affine constraint)}, \quad \text{and / or} \\ \langle f,h
angle &\geq \gamma, \ \forall h \in B[\tilde{h},\delta] \quad \text{(Robustness)}. \end{split}$$

< 6 b

A B F A B F

40/54

Algorithm for Robust Regression in RKHS

Let the index set $\mathcal{J}_n := \{n - q + 1, ..., n\}$. Also the weights $\omega_j^{(n)} \ge 0$ such that $\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} = 1$. For $f_0 \in \mathcal{H}$,

$$f_{n+1} := P_{\Pi} P_K \left(f_n + \mu_n \left(\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{S_j}(f_n) - f_n \right) \right), \quad \forall n \ge 0,$$

where the extrapolation coefficient $\mu_n \in [0, 2\mathcal{M}_n]$ with

$$\mathcal{M}_n := \begin{cases} \frac{\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} \| P_{S_j}(f_n) - f_n \|^2}{\| \sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{S_j}(f_n) - f_n \|^2}, & \text{if } f_n \notin \bigcap_{j \in \mathcal{J}_n} S_j, \\ 1, & \text{otherwise.} \end{cases}$$

Sergios Theodoridis (Uni of Athens)

41/54

Theorem

By mathematical induction on the previous algorithmic procedure, for each index n, there exist $(\gamma_i^{(n)})$, and $(\alpha_i^{(n)})$ such that [Slavakis, Theodoridis '08]

$$f_n := \underbrace{\sum_{l=1}^{L_c} \alpha_l^{(n)} \tilde{h}_l}_{\text{Constraints}} + \underbrace{\sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot)}_{\text{Training Data}}, \quad \forall n.$$

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

November 16, 2008 42 / 54

A B F A B F

< 6 b

Recall that

$$f_n := \sum_{l=1}^{L_c} \alpha_l^{(n)} \tilde{h}_l + \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot), \qquad \forall n.$$

æ

A (10) × (10) × (10)
Sparsification

Recall that

$$f_n := \sum_{l=1}^{L_c} \alpha_l^{(n)} \tilde{h}_l + \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot), \qquad \forall n.$$

Memory and computational load grows unbounded as $n \to \infty$!

Sparsification

Recall that

$$f_n := \sum_{l=1}^{L_c} \alpha_l^{(n)} \tilde{h}_l + \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot), \qquad \forall n.$$

Memory and computational load grows unbounded as $n \to \infty$!

Additionally constrain the norm of f_n by a predefined $\delta > 0$:

 $(\forall n \ge 0) \ f_n \in \mathcal{B} := \{f \in \mathcal{H} : \|f\| \le \delta\} : \text{ Closed Ball.}$

4 D K 4 B K 4 B K 4 B K

Sparsification

Recall that

$$f_n := \sum_{l=1}^{L_c} \alpha_l^{(n)} \tilde{h}_l + \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot), \qquad \forall n.$$

Memory and computational load grows unbounded as $n \to \infty$!

Additionally constrain the norm of f_n by a predefined $\delta > 0$:

$$(\forall n \ge 0) f_n \in \mathcal{B} := \{f \in \mathcal{H} : ||f|| \le \delta\}$$
: Closed Ball.

Goal

Thus, we are looking for a classifier $f \in \mathcal{H}$ such that

$$f \in \mathcal{B} \cap K \cap \Pi \cap (\bigcap S_n).$$

n

f_n

æ

◆□ > ◆圖 > ◆ ヨ > ◆ ヨ >

500

æ

< **₽** ► < **≥** ►

< 🗗 ▶

- € ≣ →

→ E → < E →</p>

< 🗗 ▶

★ E ► ★ E ►

< 🗗 ▶

$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \quad \forall f \in \mathcal{H}, \forall n.$$

Sergios Theodoridis (Uni of Athens)

November 16, 2008 45 / 54

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \qquad \forall f \in \mathcal{H}, \forall n.$$

Piece of Information: $C_n := \{f \in \mathcal{H} : \Theta_n(f) \leq 0\}.$

3

$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \qquad \forall f \in \mathcal{H}, \forall n.$$

Piece of Information: $C_n := \{f \in \mathcal{H} : \Theta_n(f) \leq 0\}.$

3

$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \qquad \forall f \in \mathcal{H}, \forall n.$$

Piece of Information: $C_n := \{f \in \mathcal{H} : \Theta_n(f) \le 0\}.$

3

(日)

$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \qquad \forall f \in \mathcal{H}, \forall n.$$

Piece of Information: $C_n := \{f \in \mathcal{H} : \Theta_n(f) \le 0\}.$

3

(日)

$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \quad \forall f \in \mathcal{H}, \forall n.$$

Piece of Information: $C_n := \{f \in \mathcal{H} : \Theta_n(f) \le 0\}.$

3

(日)

$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \qquad \forall f \in \mathcal{H}, \forall n.$$

Piece of Information: $C_n := \{f \in \mathcal{H} : \Theta_n(f) \le 0\}.$

э

$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \qquad \forall f \in \mathcal{H}, \forall n.$$

Piece of Information: $C_n := \{f \in \mathcal{H} : \Theta_n(f) \le 0\}.$

э

$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \qquad orall f \in \mathcal{H}, orall n.$$

Piece of Information: $C_n := \{f \in \mathcal{H} : \Theta_n(f) \leq 0\}.$

For an arbitrary $f_0 \in \mathcal{H}$, and $\forall n$,

$$f_{n+1} = \begin{cases} T\left(f_n - \lambda_n \frac{\Theta_n(f_n)}{\|\Theta'_n(f_n)\|^2} \Theta'_n(f_n)\right), & \text{if } \Theta'_n(f_n) \neq 0, \\ T(f_n), & \text{if } \Theta'_n(f_n) = 0, \end{cases}$$

where

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

November 16, 2008 46 / 54

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

For an arbitrary $f_0 \in \mathcal{H}$, and $\forall n$,

$$f_{n+1} = \begin{cases} T\left(f_n - \lambda_n \frac{\Theta_n(f_n)}{\|\Theta'_n(f_n)\|^2} \Theta'_n(f_n)\right), & \text{if } \Theta'_n(f_n) \neq 0, \\ T(f_n), & \text{if } \Theta'_n(f_n) = 0, \end{cases}$$

where

• T comprises the projections associated with the constraints.

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

November 16, 2008 46 / 54

For an arbitrary $f_0 \in \mathcal{H}$, and $\forall n$,

$$f_{n+1} = \begin{cases} T\left(f_n - \lambda_n \frac{\Theta_n(f_n)}{\|\Theta'_n(f_n)\|^2} \Theta'_n(f_n)\right), & \text{if } \Theta'_n(f_n) \neq 0, \\ T(f_n), & \text{if } \Theta'_n(f_n) = 0, \end{cases}$$

where

- T comprises the projections associated with the constraints.
- In case Θ_n is non-differentiable the subgradient Θ'_n is used in the place of the gradient.

A (10) A (10)

For an arbitrary $f_0 \in \mathcal{H}$, and $\forall n$,

$$f_{n+1} = \begin{cases} T\left(f_n - \lambda_n \frac{\Theta_n(f_n)}{\|\Theta'_n(f_n)\|^2} \Theta'_n(f_n)\right), & \text{if } \Theta'_n(f_n) \neq 0, \\ T(f_n), & \text{if } \Theta'_n(f_n) = 0, \end{cases}$$

where

- T comprises the projections associated with the constraints.
- In case Θ_n is non-differentiable the subgradient Θ'_n is used in the place of the gradient.
- Note that the above recursion holds true for any strongly attracting nonexpansive mapping *T* [Slavakis, Yamada, Ogura '06].

Definition (Nonexpansive Mapping)

A mapping T is called nonexpansive if

$$||T(f_1) - T(f_2)|| \le ||f_1 - f_2||, \quad \forall f_1, f_2 \in \mathcal{H}.$$

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

November 16, 2008 47 / 54

< 同 ト < 三 ト < 三 ト

Definition (Subgradient)

Given a convex continuous function Θ_n , the subgradient $\Theta'_n(f)$ is an element of \mathcal{H} such that

$$\langle g - f, \Theta'_n(f) \rangle + \Theta_n(f) \le \Theta_n(g), \forall g \in \mathcal{H}.$$

4 6 1 1 4

- N

Definition (Subgradient)

Given a convex continuous function Θ_n , the subgradient $\Theta'_n(f)$ is an element of $\mathcal H$ such that

$$\langle g - f, \Theta'_n(f) \rangle + \Theta_n(f) \le \Theta_n(g), \forall g \in \mathcal{H}.$$

Definition (Subgradient)

Given a convex continuous function Θ_n , the subgradient $\Theta'_n(f)$ is an element of $\mathcal H$ such that

$$\langle g - f, \Theta'_n(f) \rangle + \Theta_n(f) \le \Theta_n(g), \forall g \in \mathcal{H}.$$

Definition (Subgradient)

Given a convex continuous function Θ_n , the subgradient $\Theta'_n(f)$ is an element of $\mathcal H$ such that

$$\langle g - f, \Theta'_n(f) \rangle + \Theta_n(f) \le \Theta_n(g), \forall g \in \mathcal{H}.$$

Definition (Subgradient)

Given a convex continuous function Θ_n , the subgradient $\Theta'_n(f)$ is an element of $\mathcal H$ such that

$$\langle g - f, \Theta'_n(f) \rangle + \Theta_n(f) \le \Theta_n(g), \forall g \in \mathcal{H}.$$

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

Definition (Subgradient)

Given a convex continuous function Θ_n , the subgradient $\Theta'_n(f)$ is an element of $\mathcal H$ such that

$$\langle g - f, \Theta'_n(f) \rangle + \Theta_n(f) \le \Theta_n(g), \forall g \in \mathcal{H}.$$

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

Definition (Subgradient)

Given a convex continuous function Θ_n , the subgradient $\Theta'_n(f)$ is an element of $\mathcal H$ such that

$$\langle g - f, \Theta'_n(f) \rangle + \Theta_n(f) \le \Theta_n(g), \forall g \in \mathcal{H}.$$

Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections

November 16, 2008 48 / 54

Definition (Fixed Point Set)

Given a mapping $T : \mathcal{H} \to \mathcal{H}$, $Fix(T) := \{f \in \mathcal{H} : T(f) = f\}$.

Define at $n \ge 0$, $\Omega_n := \operatorname{Fix}(T) \cap (\operatorname{arg\,min}_{f \in \mathcal{H}} \Theta_n(f))$. Let $\Omega := \bigcap_{n \ge n_0} \Omega_n \neq \emptyset$, for some nonnegative integer n_0 . Set the extrapolation parameter $\mu_n \in [\mathcal{M}_n \epsilon_1, \mathcal{M}_n(2 - \epsilon_2)]$, $\forall n \ge n_0$ for some sufficiently small $\epsilon_1, \epsilon_2 > 0$. Then, the following statements hold.

• Monotone approximation. For any $f' \in \Omega$, we have

$$||f_{n+1} - f'|| \le ||f_n - f'||, \quad \forall n \ge n_0.$$

- Asymptotic minimization. $\lim_{n\to\infty} \Theta_n(f_n) = 0.$
- Strong convergence. Assume that there exists a hyperplane $\Pi \subset \mathcal{H}$ such that $\operatorname{ri}_{\Pi}(\Omega) \neq \emptyset$. Then, there exists a $f_* \in \operatorname{Fix}(T)$ such that $\lim_{n \to \infty} f_n =: f_*$.
- Characterization of the limit point. Assume that $int(\Omega) \neq \emptyset$. Then, the limit point

$$f_* \in \operatorname{clos}(\liminf_{n \to \infty} \Omega_n),$$

where $\liminf_{n\to\infty} \Omega_n := \bigcup_{m=0}^{\infty} \bigcap_{n\geq m} \Omega_n$.

Adaptive Beamforming in RKHS

Problem Formulation

 Training Data: The received signals and the sequence of symbols sent by the Signal Of Interest (SOI).

A B F A B F

< 6 k

- Training Data: The received signals and the sequence of symbols sent by the Signal Of Interest (SOI).
- Constraints: Given erroneous information \tilde{s}_0 on the actual SOI steering vector s_0 (e.g. imperfect array calibration), find a solution that gives uniform output for all the steering vectors in an area around \tilde{s}_0 ; use a closed ball $B[\tilde{s}_0, \delta]$.

₽ Robustness is desired!

- Training Data: The received signals and the sequence of symbols sent by the Signal Of Interest (SOI).
- Constraints: Given erroneous information \tilde{s}_0 on the actual SOI steering vector s_0 (e.g. imperfect array calibration), find a solution that gives uniform output for all the steering vectors in an area around \tilde{s}_0 ; use a closed ball $B[\tilde{s}_0, \delta]$.

[♥] Robustness is desired!

 Antenna Geometry: Only 3 array elements, but with 5 jammers with SNRs 10, 30, 20, 10, and 30 dB. The SOI's SNR is set equal to 10 dB.

A THE A THE

Numerical Results Beam-Patterns

	Input	LCMV	KRLS	APSM
SINR (dB)	-23.26	-20.21	Very low	18.65

æ

イロト イヨト イヨト イヨト

Numerical Results

November 16, 2008

< 一型

- A geometric framework for learning in Reproducing Kernel Hilbert Spaces (RKHS) was presented.
- The key ingredients of the framework are
 - the basic tool of metric projections,
 - the Set Theoretic Estimation approach, where each property of the system is described by a closed convex set.
- Both the online classification and regression tasks were considered.
- The way to encapsulate a-priori constraints as well as sparsification, in the framework was also depicted.
- The framework can be easily extended to any continuous, not necessarily differentiable, convex cost function, and to any closed convex a-priori constraint.
- A nonlinear online beamforming task was presented in order to validate the proposed approach.