TSIPN Volume 5 Issue 2

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

2019

TSIPN Volume 5 Issue 2

The adaptive algorithms applied to distributed networks are usually real-valued diffusion subband adaptive filter algorithms. However, it cannot be used for processing the complex-valued signals. In this paper, a novel augmented complex-valued diffusion normalized subband adaptive filter (D-ACNSAF) algorithm is proposed for distributed estimation over networks. In order to deal with the noncircular complex-valued signals, the D-ACNSAF algorithm uses the widely linear model for a diffusion network.

This paper utilizes the family of affine projection algorithms (APAs) for distributed estimation in the adaptive diffusion networks. The diffusion APA (DAPA), the diffusion selective partial update (SPU) APA (DSPU-APA), the diffusion selective regressor (SR) APA (DSR-APA), and the diffusion dynamic selection (DS) APA (DDS-APA) are introduced in a unified way. In DSPU-APA, the weight coefficients are partially updated at each node during the adaptation.

We consider the detection and tracking of a target in a decentralized sensor network. The presence of the target is uncertain, and the sensor measurements are affected by clutter and missed detections. The state-evolution model and the measurement model may be nonlinear and non-Gaussian. For this practically relevant scenario, we propose a particle-based distributed Bernoulli filter (BF) that provides to each sensor approximations of the Bayes-optimal estimates of the target presence probability and the target state.

This paper studies the problem of estimation from relative measurements in a graph, in which a vector indexed over the nodes has to be reconstructed from pairwise measurements of differences between its components associated with nodes connected by an edge. In order to model heterogeneity and uncertainty of the measurements, we assume them to be affected by additive noise distributed according to a Gaussian mixture.

SPS ON X

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel