IEEE Signal Processing Letters

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

We consider the problem of recovering off-the-grid spikes from linear measurements in the context of Single Molecule Localization Microscopy (SMLM). State of the art model-based methods such as Over-Parametrized Continuous Orthogonal Matching Pursuit (OP-COMP) with Projected Gradient Descent (PGD) have been shown to successfully recover those signals. 

Single-satellite geolocation achieves effective localization of ground electromagnetic interference (EMI) signals with a low cost compared to the multi-satellite counterparts. In such systems, the Doppler and Doppler rate are commonly exploited to extract the information of the ground EMI sources and the constrained Unscented Kalman filter (cUKF) is found effective to provide instantaneous EMI locations over time. 

Scene-Text Visual Question Answering (STVQA) is a comprehensive task that requires reading and understanding the text in images to answer the question. Existing methods of exploring the vision-language relationships between questions, images, and scene text have achieved impressive results. However, these studies heavily rely on auxiliary modules, such as external OCR systems and object detection networks, making the question-answering process cumbersome and highly dependent.

Blind image quality assessment (BIQA) is crucial for user satisfaction and the performance of various image processing applications. Most BIQA methods directly use the pre-trained model to extract features and then perform feature fusion. However, the features extracted by pre-trained models may contain irrelevant information to BIQA. Although some methodspre-train the feature extraction network from scratch, these approaches raise computational costs and resource demands.

Adaptive importance sampling (AIS) methods provide a useful alternative to Markov Chain Monte Carlo (MCMC) algorithms for performing inference of intractable distributions. Population Monte Carlo (PMC) algorithms constitute a family of AIS approaches which adapt the proposal distributions iteratively to improve the approximation of the target distribution. 

Vision Transformer (ViT)-based image super-resolution (SR) methods have achieved impressive performance and surpassed CNN-based SR methods by utilizing Multi-Head Self-Attention (MHSA) to model long-range dependencies. However, the quadratic complexity of MHSA and the inefficiency of non-parallelized window partition seriously affect the inference speed, hindering these SR methods from being applied to application scenarios requiring speed and quality.

Learning-based approaches inspired by the scattering model for enhancing underwater imagery have gained prominence. Nevertheless, these methods often suffer from time-consuming attributable to their sizable model dimensions. Moreover, they face challenges in adapting unknown scenes, primarily because the scattering model's original design was intended for atmospheric rather than marine condition.

Decoding silent reading Electroencephalography (EEG) signals is challenging because of its low signal-to-noise ratio. In addition, EEG signals are typically non-Euclidean structured, therefore merely using a two-dimensional matrix to represent the variation of sampling points of each channel in time cannot richly represent the spatial connection between channels. 

This letter proposes a generalised extended nested array with multiple subarrays (GENAMS) array via the maximum inter-element spacing (IES) constraint principle. Based on the IES set patterns of the two-sides extended nested array and the flexible extended nested array with multiple subarrays type-2, a generalised IES set pattern is derived.

3D face reconstruction from a single image still suffers from low accuracy and inability to recover textures in invisible regions. In this paper, we propose a method for generating a 3D portrait with complete texture. The coarse face-and-head model and texture parameters are obtained using 3D Morphable Model fitting. We design an image-geometric inverse renderer that acquires normal, albedo, and light to jointly reconstruct the facial details.

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel