Skip to main content

SPL Articles

Improved RIC Bounds in Terms of δ2s for Hard Thresholding-Based Algorithms

Iterative hard thresholding (IHT) and hard thresholding pursuit (HTP) are two kinds of classical hard thresholding-based algorithms widely used in compressed sensing. Restricted isometry constant (RIC) of sensing matrix which ensures the convergence of iterative algorithms plays a key role in guaranteeing successful recovery. In the analysis of sufficient condition to ensure recovery performance, the RIC δ3s is generally used in previous literature, while δ2s is rarely addressed. In this letter, we first show that the theoretical optimal step-length is 1 while using sufficient condition in terms of δ2s .

Read more

Learning Adaptive Sparse Spatially-Regularized Correlation Filters for Visual Tracking

The correlation filter(CF)-based tracker is a classic and effective model in the field of visual tracking. For a long time, most CF-based trackers solved filters using only ridge regression equations with l2 -norm, which can make the trained model noisy and not sparse. As a result, we propose a model of adaptive sparse spatially-regularized correlation filters (AS2RCF). Aiming to suppress the noise mixed in the model, we improve it by introducing an l1 -norm spatial regularization term. 

Read more

Deep Image Registration With Depth-Aware Homography Estimation

Image registration is a basic task in computer vision, for its wide potential applications in image stitching, stereo vision, motion estimation, and etc. Most current methods achieve image registration by estimating a global homography matrix between candidate images with point-feature-based matching or direct prediction. However, as real-world 3D scenes have point-variant photograph distances (depth), a unified homography matrix is not sufficient to depict the specific pixel-wise relations between two images.

Read more

Spatial-Angular Versatile Convolution for Light Field Reconstruction

Spatial-angular separable convolution (SAS-conv) has been widely used for efficient and effective 4D light field (LF) feature embedding in different tasks, which mimics a 4D convolution by alternatively operating on 2D spatial slices and 2D angular slices. In this paper, we argue that, despite its global intensity modeling capabilities, SAS-conv can only embed local geometry information into the features, resulting in inferior performances in the regions with textures and occlusions. Because the epipolar lines are highly related to the scene depth, we introduce the concept of spatial-angular correlated convolution (SAC-conv).

Read more

ET: Edge-Enhanced Transformer for Image Splicing Detection

A key challenge of image splicing detection is how to localize integral tampered regions without false alarm. Although current forgery detection approaches have achieved promising performance, the integrality and false alarm are overlooked. In this paper, we argue that the insufficient use of splicing boundary is a main reason for poor accuracy. To tackle this problem, we propose an Edge-enhanced Transformer (ET) for tampered region localization. Specifically, to capture rich tampering traces, a two-branch edge-aware transformer is built to integrate the splicing edge clues into the forgery localization network, generating forgery features and edge features.

Read more

Learn to Zoom in Single Image Super-Resolution

In this letter, we propose a novel solution to the problem of single image super-resolution at multiple scaling factors, with a single network architecture. In applications where only a detail needs to be super-resolved, traditional solutions must choose to use as input either the low-resolution detail, thus losing the information about the context, or the whole low-resolution image and then crop the desired output detail, which is quite wasteful in terms of computations and storage. 

Read more

Spatial Diversity in Radar Detection via Active Reconfigurable Intelligent Surfaces

Active reconfigurable intelligent surfaces (RISs) are a novel and promising technology that allows controlling the radio propagation environment while compensating for the product path loss along the RIS-assisted path. In this letter, we consider the classical radar detection problem and propose to use an active RIS to get a second independent look at a prospective target illuminated by the radar transmitter.

Read more

A Convex Optimization Approach For NLOS Error Mitigation in TOA-Based Localization

This paper addresses the target localization problem using time-of-arrival (TOA)-based technique under the non-line-of-sight (NLOS) environment. To alleviate the adverse effect of the NLOS error on localization, a total least square framework integrated with a regularization term (RTLS) is utilized, and with which the localization problem can get rid of the ill-posed issue. However, it is challenging to figure out the exact solution for the considered localization problem.

Read more