Skip to main content

SPL Articles

CNN-RNN and Data Augmentation Using Deep Convolutional Generative Adversarial Network for Environmental Sound Classification

Deep neural networks in deep learning have been widely demonstrated to have higher accuracy and distinct advantages over traditional machine learning methods in extracting data features. While convolutional neural networks (CNNs) have shown great success in feature extraction and audio classification, it is important to note that real-time audios are dependent on previous scenes. Also, the main drawback of deep learning algorithms is that they need a huge number of datasets to indicate their efficient performance.

Read more

ALiSa: Acrostic Linguistic Steganography Based on BERT and Gibbs Sampling

In this letter, we propose a novel linguistic steganographic method that directly conceals a token-level secret message in a seemingly-natural steganographic text generated by the off-the-shelf BERT model equipped with Gibbs sampling. Compared with all modification based linguistic steganographic methods, the proposed method does not modify a given cover text. Instead, the proposed method utilizes the secret message to directly generate the steganographic text.

Read more

Perceiving Temporal Environment for Correlation Filters in Real-Time UAV Tracking

Discriminative correlation filter (DCF)-based methods applied for UAV object tracking have received widespread attention due to their high efficiency. However, these methods are usually troubled by the boundary effect. Besides, the violent environment variations severely confuse trackers that neglect temporal environmental changes among consecutive frames, leading to unwanted tracking drift. In this letter, we propose a novel DCF-based tracking method to promote the insensitivity of the tracker under uncertain environmental changes.

Read more

Real-Time Audio-Guided Multi-Face Reenactment

Audio-guided face reenactment aims to generate authentic target faces that have matched facial expression of the input audio, and many learning-based methods have successfully achieved this. However, most methods can only reenact a particular person once trained or suffer from the low-quality generation of the target images. Also, nearly none of the current reenactment works consider the model size and running speed that are important for practical use.

Read more

Ensemble Stego Selection for Enhancing Image Steganography

In this paper, we propose an enhancing steganographic scheme by random generation and ensemble stego selection. Different from existing steganography that only focuses on distortion function designing, our scheme considers both distortion model and optimized stego generation. In specific, for given cover, we firstly train an universal steganalyzer to calculate its gradient map, which is referenced to randomly adjust cost distribution of this cover. 

Read more

Multi-Modal Visual Place Recognition in Dynamics-Invariant Perception Space

Visual place recognition is one of the essential and challenging problems in the fields of robotics. In this letter, we for the first time explore the use of multi-modal fusion of semantic and visual modalities in dynamics-invariant space to improve place recognition in dynamic environments. We achieve this by first designing a novel deep learning architecture to generate the static semantic segmentation and recover the static image directly from the corresponding dynamic image. 

Read more

Partially Linear Bayesian Estimation Using Mixed-Resolution Data

In this letter, we consider Bayesian parameterestimation using mixed-resolution data consisting of both analog and 1-bit quantized measurements. We investigate the use of the partially linear minimum mean-squared-error (PL-MMSE) estimator for this mixed-resolution scheme. The use of the PL-MMSE estimator, proposed for general models with “straightforward” and “complicated” parts, has not been demonstrated for quantized data. 

Read more

Learning Dynamic Spatial-Temporal Regularization for UAV Object Tracking

With the wide vision and high flexibility, unmanned aerial vehicle (UAV) has been widely used into object tracking in recent years. However, its limited computing capability poses a great challenges to tracking algorithms. On the other hand, Discriminative Correlation Filter (DCF) based trackers have attracted great attention due to their computational efficiency and superior accuracy. Many studies introduce spatial and temporal regularization into the DCF framework to achieve a more robust appearance model and further enhance the tracking performance. However, such algorithms generally set fixed spatial or temporal regularization parameters, which lack flexibility and adaptability under cluttered and challenging scenarios.

Read more

New Sets of Quadriphase Cross Z-Complementary Pairs for Preamble Design in Spatial Modulation

Cross Z-complementary pairs (CZCPs) are a special kind of Z-complementary pairs having zero autocorrelation sums around the in-phase position and end-shift position, also having zero cross-correlation sums around the end-shift position. Recent results have shown that CZCPs are very efficient in designing pilot sequences for spatial modulation enabled multiple-input multiple-output (MIMO) systems. In this paper, we propose systematic constructions of binary and quadriphase CZCPs with new lengths of the form 2M, where even-length binary Z-complementary pairs of length M exists.

Read more

On Procrustes Analysis in Hyperbolic Space

Congruent Procrustes analysis aims to find the best matching between two point sets through rotation, reflection and translation. We formulate the Procrustes problem for hyperbolic spaces, review the canonical definition of the center mass for a point set, and give a closed-form solution for the optimal isometry between noise-free point sets. Our algorithm is analogous to the Euclidean Procrustes analysis, with centering and rotation replaced by their hyperbolic counterparts. 

Read more