The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
In this letter, we consider Bayesian parameterestimation using mixed-resolution data consisting of both analog and 1-bit quantized measurements. We investigate the use of the partially linear minimum mean-squared-error (PL-MMSE) estimator for this mixed-resolution scheme. The use of the PL-MMSE estimator, proposed for general models with “straightforward” and “complicated” parts, has not been demonstrated for quantized data. We derive closed-form analytic expressions for the linear minimum mean-squared-error (LMMSE) and for the PL-MMSE estimator for the mixed-resolution scheme with linear Gaussian orthonormal measurements. We discuss the properties of the proposed PL-MMSE estimator and show that in this case, the PL-MMSE is the sum of a linear function of the quantized measurements and a general Borel measurable function of the analog measurements. In the simulations, we show that the PL-MMSE estimator outperforms the LMMSE estimator for the problem of channel estimation in multiple-input-multiple-output (MIMO) communication systems with mixed analog-to-digital converters (ADCs).
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.