IEEE TSP Article

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

IEEE TSP Article

Wide-sense cyclostationary processes are an important class of non-stationary processes that have a periodic structure in their first- and second-order moments. This article extends the notion of cyclostationarity (in the wide sense) to processes where the mean and covariance functions might depart from strict periodicities and constant amplitudes.

In this paper, power allocation is examined for the coexistence of a radar and a communication system that employ multicarrier waveforms. We propose two designs for the considered spectrum sharing problem by maximizing the output signal-to-interference-plus-noise ratio (SINR) at the radar receiver while maintaining certain communication throughput and power constraints.

Hidden Markov models are widely used for target tracking, where the process and measurement noises are usually modeled as independent Gaussian distributions for mathematical simplicity. However, the independence and Gaussian assumptions do not always hold in practice. For example, in a typical target tracking application, a radar is utilized to track a non-cooperative target. 

Time-frequency (TF) representations of time series are intrinsically subject to the boundary effects. As a result, the structures of signals that are highlighted by the representations are garbled when approaching the boundaries of the TF domain. In this paper, for the purpose of real-time TF information acquisition of nonstationary oscillatory time series, we propose a numerically efficient approach for the reduction of such boundary effects.

Adopting low-resolution analog-to-digital converters (ADCs) for receive antennas of a multiple-input multiple-output (MIMO) system can remarkably reduce the hardware cost, circuit power consumption as well as amount of data to be transferred from RF components and the baseband-processing unit.

In this paper, the particle filtering problem is investigated for a class of nonlinear/non-Gaussian systems with energy harvesting sensors subject to randomly occurring sensor saturations (ROSSs). The random occurrences of the sensor saturations are characterized by a series of Bernoulli distributed stochastic variables with known probability distributions.

In this paper, using the shrinkage-based approach for portfolio weights and modern results from random matrix theory we construct an effective procedure for testing the efficiency of the expected utility (EU) portfolio and discuss the asymptotic behavior of the proposed test statistic under the high-dimensional asymptotic regime, namely when the number of assets p increases at the same rate as the sample size n such that their ratio p/n approaches a positive constant c(0,1) as n . 

In order to perform network analysis tasks, representations that capture the most relevant information in the graph structure are needed. However, existing methods learn representations that cannot be interpreted in a straightforward way and that are relatively unstable to perturbations of the graph structure. We address these two limitations by proposing node2coords, a representation learning algorithm for graphs, which learns simultaneously a low-dimensional space and coordinates for the nodes in that space.

Inspired by the recent success of deep neural networks and the recent efforts to develop multi-layer dictionary models, we propose a Deep Analysis dictionary Model (DeepAM) which is optimized to address a specific regression task known as single image super-resolution. Contrary to other multi-layer dictionary models, our architecture contains L layers of analysis dictionary and soft-thresholding operators to gradually extract high-level features and a layer of synthesis dictionary which is designed to optimize the regression task at hand.

This paper is focused on simultaneous target detection and angle estimation with a multichannel phased array radar. Resorting to a linearized expression for the array steering vector around the beam pointing direction, the problem is formulated as a composite binary hypothesis test where the unknowns, under the alternative hypothesis, include the target directional cosines displacements with respect to the array nominal coarse pointing direction. 

Pages

SPS on Twitter

  • The 2021 IEEE International Symposium on Biomedical Imaging virtual platform is live, featuring pre-recorded talks… https://t.co/JfRAvO5hqr
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now accepting papers for a Special Iss… https://t.co/fQ25UHWidg
  • DEADLINE EXTENDED: The IEEE Journal of Selected Topics in Signal Processing is now accepting submissions for a Spec… https://t.co/AuMC67sUKd
  • The SPACE Webinar Series continues Tuesday, 6 April at 10:00 AM EDT when Dr. Ivan Dokmanić presents "Learning the G… https://t.co/4coVRWm0lc
  • NEW SPS WEBINAR: Join us on Wednesday, 28 April at 1:00 PM EDT when Dr. Fernando Gama presents "Graph Neural Networ… https://t.co/UI6Oi2PYYi

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar