IEEE TSP Article

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

IEEE TSP Article

We consider identification of linear dynamical systems comprising of high-dimensional signals, where the output noise components exhibit strong serial, and cross-sectional correlations. Although such settings occur in many modern applications, such dependency structure has not been fully incorporated in existing approaches in the literature. 

Channel estimation is of paramount importance in most communication systems in order to optimize the data rate/energy consumption tradeoff. In modern systems, the possibly large number of transmit/receive antennas and subcarriers makes this task difficult. Designing pilot sequences of reasonable size yielding good performance is thus critical. 

Speech dereverberation has been an important component of effective far-field voice interfaces in many applications. Algorithms based on multichannel linear prediction (MCLP) have been shown to be especially effective for blind speech dereverberation and numerous variants have been introduced in the literature. Most of these approaches can be derived from a common framework, where the MCLP problem for speech dereverberation is formulated as a weighted least squares problem that can be solved analytically.

We study model recovery for data classification, where the training labels are generated from a one-hidden-layer neural network with sigmoid activations, also known as a single-layer feedforward network, and the goal is to recover the weights of the neural network. We consider two network models, the fully-connected network (FCN) and the non-overlapping convolutional neural network (CNN).

A new technique for locating a moving source radiating a wide-band almost-cyclostationary signal is proposed. For this purpose, the signals received on two possibly moving sensors are modeled as jointly spectrally correlated, a new nonstationarity model that allows one to describe the Doppler effect accounting for a time-scale or time-stretch factor in the complex envelopes of the received signals.

In this paper, we study the problem of compressed sensing using binary measurement matrices and 1 -norm minimization (basis pursuit) as the recovery algorithm. We derive new upper and lower bounds on the number of measurements to achieve robust sparse recovery with binary matrices.

This paper proposes a novel algorithm to determine the optimal orientation of sensing axes of redundant inertial sensors such as accelerometers and gyroscopes (gyros) for increasing the sensing accuracy. In this paper, we have proposed a novel iterative algorithm to find the optimal sensor configuration.

Distributed data clustering in sensor networks is receiving increasing attention with the development of network technology. A variety of algorithms for distributed data clustering have been proposed recently. However, most of these algorithms have trouble with either non-Gaussian shaped data clustering or model order selection problem.

This paper proposes a novel algorithm to determine the optimal orientation of sensing axes of redundant inertial sensors such as accelerometers and gyroscopes (gyros) for increasing the sensing accuracy. In this paper, we have proposed a novel iterative algorithm to find the optimal sensor configuration.

This work presents a generalization of classical factor analysis (FA). Each of M channels carries measurements that share factors with all other channels, but also contains factors that are unique to the channel. Furthermore, each channel carries an additive noise whose covariance is diagonal, as is usual in factor analysis, but is otherwise unknown.

Pages

SPS on Twitter

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar