IEEE TMM Article

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

IEEE TMM Article

Benefiting from the powerful discriminative feature learning capability of convolutional neural networks (CNNs), deep learning techniques have achieved remarkable performance improvement for the task of salient object detection (SOD) in recent years.

While current research on multimedia is essentially dealing with the information derived from our observations of the world, internal activities inside human brains, such as imaginations and memories of past events etc., could become a brand new concept of multimedia, for which we coin as “brain-media”.

JPEG lossy image compression is a still image compression algorithm model that is currently widely used in major network media. However, it is unsatisfactory in the quality of compressed images at low bit rates. The objective of this paper is to improve the quality of compressed images and suppress blocking artifacts by improving the JPEG image compression model at low bit rates.

We have recently seen great progress in image classification due to the success of deep convolutional neural networks and the availability of large-scale datasets. Most of the existing work focuses on single-label image classification. However, there are usually multiple tags associated with an image. The existing works on multi-label classification are mainly based on lab curated labels.

The mnemonic descent method (MDM) algorithm is the first end-to-end recurrent convolutional system for high-accuracy face alignment. However, the heavy computational complexity and high memory access demands make it difficult to satisfy the requirements of real-time applications. To address this problem, an improved MDM (I-MDM) algorithm is proposed for efficient hardware implementation based on several hardware-oriented optimizations.

Recently, soft video multicasting has gained a lot of attention, especially in broadcast and mobile scenarios where the bit rate supported by the channel may differ across receivers, and may vary quickly over time. Unlike the conventional designs that force the source to use a single bit rate according to the receiver with the worst channel quality, soft video delivery schemes transmit the video such that the video quality at each receiver is commensurate with its specific instantaneous channel quality.

An automatic speech recognition (ASR) system is a key component in current speech-based systems. However, the surrounding acoustic noise can severely degrade the performance of an ASR system. An appealing solution to address this problem is to augment conventional audio-based ASR systems with visual features describing lip activity. 

Recently, saliency detection in a single image and co-saliency detection in multiple images have drawn extensive research interest in the vision and multimedia communities. In this paper, we investigate a new problem of co-saliency detection within a single image, i.e., detecting within-image co-saliency . By identifying common saliency within an image, e.g., highlighting multiple occurrences of an object class with similar appearance, this work can benefit many important applications, such as the detection of objects of interest, more robust object recognition, reduction of information redundancy, and animation synthesis. We propose a new bottom-up method to address this problem.

Low-light image enhancement is important for high-quality image display and other visual applications. However, it is a challenging task as the enhancement is expected to improve the visibility of an image while keeping its visual naturalness. Retinex-based methods have well been recognized as a representative technique for this task, but they still have the following limitations. First, due to less-effective image decomposition or strong imaging noise, various artifacts can still be brought into enhanced results.face of an object. These patches can be applied to multiple regions of the object, thereby making it resistant to various attacks such as cropping, local deformation, local surface degradation, or printing errors. 

We propose a new blind watermarking algorithm for 3D printed objects that has applications in metadata embedding, robotic grasping, counterfeit prevention, and crime investigation. Our method can be used on fused deposition modeling (FDM) 3D printers and works by modifying the printed layer thickness on small patches of the surface of an object. These patches can be applied to multiple regions of the object, thereby making it resistant to various attacks such as cropping, local deformation, local surface degradation, or printing errors. 

Pages

SPS on Twitter

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar