You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.


Monitoring all the internal flows in a datacenter is important to protect a victim against internal distributed denial-of-service (DDoS) attacks. Unused virtual machines (VMs) in a datacenter are used as monitors and flows are copied to the monitors from software defined networking (SDN) switches by adding some special rules. In such a system, a VM runs a machine learning method to detect DDoS behavior but it can only process a limited number/amount of flows. 

User activities in cyberspace leave unique traces for user identification (UI). Individual users can be identified by their frequent activity items through statistical feature matching. However, such approaches face the data sparsity problem. In this paper, we propose to address this problem by multi-item-set fingerprinting that identifies users not only based on their frequent individual activity items, but also their frequent consecutive item sequences with different lengths.

Identifying information sources plays a significant role in network science and engineering. However, existing source identification approaches generally focus on static networks without considering the temporal features of networks. To this end, we comprehensively study the problem of identifying single and multiple information sources in time-varying networks.

In this paper, a cyber-physical system (CPS) is considered, whose state estimation is done by a central controller (CC) using the measurements received from a wireless powered sensor network (WPSN) over fading channels. An adversary injects false data in this system by compromising some of the idle sensor nodes (SNs) of the WPSN. Using the WPSN for transmitting supervision and control data, in the aforementioned setting, makes the CPS vulnerable to both error and false data injection (FDI). 

In this study, we propose a neural network-based face anti-spoofing algorithm using dual pixel (DP) sensor images. The proposed algorithm has two stages: depth reconstruction and depth classification. The first network takes a DP image pair as input and generates a depth map with a baseline of approximately 1 mm. Then, the classification network is trained to distinguish real individuals and planar attack shapes to produce a binary output.

Anonymous authentication (AA) schemes are used by an application provider to grant services to its n users for pre-defined k times after they have authenticated themselves anonymously. These privacy-preserving cryptographic schemes are essentially based on the secret key that is embedded in a trusted platform module (TPM).

This article proposes an algorithm which allows Alice to simulate the game played between her and Eve. Under the condition that the set of detectors that Alice assumes Eve to have is sufficiently rich (e.g. CNNs), and that she has an algorithm enabling to avoid detection by a single classifier (e.g adversarial embedding, gibbs sampler, dynamic STCs), the proposed algorithm converges to an efficient steganographic algorithm.

Recent years have witnessed the proliferation of the deployment of virtualization techniques. Virtualization is designed to be transparent, that is, unprivileged users should not be able to detect whether a system is virtualized. Such detection can result in serious security threats such as evading virtual machine (VM)-based malware dynamic analysis and exploiting vulnerabilities for cross-VM attacks.

The recent success of Deep Convolutional Neural Network (DCNN) for various computer vision tasks such as image recognition has already demonstrated its robust feature representation ability. However, the limitation of training database on small scale vein recognition tasks restricts its performance because the recognition result of DCNN depends heavily on the number of trainsets.

Modern System-on-Chip (SoC) designs integrate a number of third party IPs (3PIPs) that coordinate and communicate through a Network-on-Chip (NoC) fabric to realize system functionality. An important class of SoC security attack involves a rogue IP tampering with the inter-IP communication.


SPS on Twitter

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar