IEEE TIFS Article

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

IEEE TIFS Article

In the modern interconnected world, intelligent networks and computing technologies are increasingly being incorporated in industrial systems. However, this adoption of advanced technology has resulted in increased cyber threats to cyber-physical systems. Existing intrusion detection systems are continually challenged by constantly evolving cyber threats. Machine learning algorithms have been applied for intrusion detection. In these techniques, a classification model is trained by learning cyber behavior patterns.

Recently, moving target defence (MTD) has been proposed to thwart false data injection (FDI) attacks in power system state estimation by proactively triggering the distributed flexible AC transmission system (D-FACTS) devices. One of the key challenges for MTD in power grid is to design its real-time implementation with performance guarantees against unknown attacks.

As one of the vital topics in intelligent surveillance, weakly supervised online video anomaly detection (WS-OVAD) aims to identify the ongoing anomalous events moment-to-moment in streaming videos, trained with only video-level annotations. Previous studies tended to utilize a unified single-stage framework, which struggled to simultaneously address the issues of online constraints and weakly supervised settings. To solve this dilemma, in this paper, we propose a two-stage-based framework, namely “decouple and resolve” (DAR), which consists of two modules, i.e., temporal proposal producer (TPP) and online anomaly localizer (OAL).

Side-channel security has become a significant concern in the NIST post-quantum cryptography standardization process. The lattice-based CRYSTALS-Dilithium (abbr. Dilithium) becomes the primary signature standard algorithm recommended by NIST for most use cases in July 2022 due to its excellent performance in security and efficiency. Compared to Dilithium’s rich theoretical security analysis results, the side-channel security of its physical implementations needs to be further explored. 

Near-InfraRed and VISual (NIR-VIS) face matching, as one of the most representative tasks in Heterogeneous Face Recognition (HFR), aims at retrieving a face image across different domains. With the development of deep learning and the growing demand for intelligent surveillance, it has aroused more and more research attention in the computer vision community.

With the wide use of smartphones, more private data are collected and saved in the smartphones. This raises higher requirements for secure and effective user authentication scheme. Continuous authentication leverages behavioral biometrics as identity information and shows promising characteristics for user verification in a continuous and passive means.

Iris pattern recognition has significantly improved the biometric authentication field due to its high stability and uniqueness. Such physical characteristics have played an essential role in security applications and other related areas. However, presentation attacks, also known as spoofing techniques, can bypass biometric authentication systems using artefacts such as printed images, artificial eyes, textured contact lenses, etc. Many liveness detection methods that improve the robustness of these systems have been proposed. The first International Iris Liveness Detection competition, where the effectiveness of liveness detection methods is evaluated, was first launched in 2013, and its latest iteration was held in 2020.

We present Poligraph, an intrusion-tolerant and decentralized fake news detection system. Poligraph aims to address architectural, system, technical, and social challenges of building a practical, long-term fake news detection platform. We first conduct a case study for fake news detection at authors’ institute, showing that machine learning-based reviews are less accurate but timely, while human reviews, in particular, experts reviews, are more accurate but time-consuming. 

Password strength meters (PSMs) are being widely used, but they often give conflicting, inaccurate and misleading feedback, which defeats their purpose. Except for fuzzyPSM, all PSMs assume passwords are newly constructed, which is not true in reality. FuzzyPSM considers password reuse, six major leet transformations and initial capitalization, and performs the best as evaluated by Golla and Dürmuth at ACM CCS’18. On the basis of fuzzyPSM, we propose a new PSM based on R euse, L eet and S eparation, namely RLS-PSM.

This paper presents a signal processing and machine learning (ML) based methodology to leverage Electromagnetic (EM) emissions from an embedded device to remotely detect a malicious application running on the device and classify the application into a malware family. We develop Fast Fourier Transform (FFT) based feature extraction followed by Support Vector Machine (SVM) and Random Forest (RF) based ML models to detect a malware. We further propose methods to learn characteristic behavior of different malwares from EM traces to reveal similarities to known malware families and improve efficiency of malware analysis.

Pages

SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting… https://t.co/NLH2u19a3y
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in… https://t.co/V6Z3wKGK1O
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat… https://t.co/0aYPMDSWDj
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special… https://t.co/NPCGrSjQbh
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:… https://t.co/4xal7voFER

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar