Skip to main content

TIFS Volume 18 | 2023

EEFED: Personalized Federated Learning of Execution&Evaluation Dual Network for CPS Intrusion Detection

In the modern interconnected world, intelligent networks and computing technologies are increasingly being incorporated in industrial systems. However, this adoption of advanced technology has resulted in increased cyber threats to cyber-physical systems. Existing intrusion detection systems are continually challenged by constantly evolving cyber threats. Machine learning algorithms have been applied for intrusion detection. In these techniques, a classification model is trained by learning cyber behavior patterns.

Read more

Decouple and Resolve: Transformer-Based Models for Online Anomaly Detection From Weakly Labeled Videos

As one of the vital topics in intelligent surveillance, weakly supervised online video anomaly detection (WS-OVAD) aims to identify the ongoing anomalous events moment-to-moment in streaming videos, trained with only video-level annotations. Previous studies tended to utilize a unified single-stage framework, which struggled to simultaneously address the issues of online constraints and weakly supervised settings. To solve this dilemma, in this paper, we propose a two-stage-based framework, namely “decouple and resolve” (DAR), which consists of two modules, i.e., temporal proposal producer (TPP) and online anomaly localizer (OAL).

Read more

Practical Public Template Attack Attacks on CRYSTALS-Dilithium With Randomness Leakages

Side-channel security has become a significant concern in the NIST post-quantum cryptography standardization process. The lattice-based CRYSTALS-Dilithium (abbr. Dilithium) becomes the primary signature standard algorithm recommended by NIST for most use cases in July 2022 due to its excellent performance in security and efficiency. Compared to Dilithium’s rich theoretical security analysis results, the side-channel security of its physical implementations needs to be further explored. 

Read more