IEEE TMM Article

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

IEEE TMM Article

Recent advances in image acquisition and analysis have resulted in disruptive innovation in physical rehabilitation systems facilitating cost-effective, portable, video-based gait assessment. While these inexpensive motion capture systems, suitable for home rehabilitation, do not generally provide accurate kinematics measurements on their own, image processing algorithms ensure gait analysis that is accurate enough for rehabilitation programs. 

With the development of cloud storage and privacy protection, reversible data hiding in encrypted images (RDHEI) has attracted increasing attention as a technology that can: embed additional data in the image encryption domain, ensure that the embedded data can be extracted error-free, and the original image can be restored losslessly. 

Image compression has been an important research topic for many decades. Recently, deep learning has achieved great success in many computer vision tasks, and its use in image compression has gradually been increasing. In this paper, we present an energy compaction-based image compression architecture using a convolutional autoencoder (CAE) to achieve high coding efficiency. 

Light field (LF) imaging enables new possibilities for digital imaging, such as digital refocusing, changing of focus plane, changing of viewpoint, scene-depth estimation, and 3D scene reconstruction, by capturing both spatial and angular information of light rays. However, one main problem in dealing with LF data is its sheer volume.

The scalable high efficiency video coding (SHVC) is an extension of high efficiency video coding (HEVC). It introduces multiple layers and inter-layer prediction, thus significantly increases the coding complexity on top of the already complicated HEVC encoder. In inter prediction for quality SHVC, in order to determine the best possible mode at each depth level, a coding tree unit can be recursively split into four depth levels.

This paper deals with the design of a sensing matrix along with a sparse recovery algorithm by utilizing the probability-based prior information for compressed sensing systems. With the knowledge of the probability for each atom of the dictionary being used, a diagonal weighted matrix is obtained and then the sensing matrix is designed by minimizing a weighted function such that the Gram of the equivalent dictionary is as close to the Gram of dictionary as possible.

Research in light field (LF) processing has heavily increased over the last decade. This is largely driven by the desire to achieve the same level of immersion and navigational freedom for camera-captured scenes as it is currently available for CGI content. Standardization organizations such as MPEG and JPEG continue to follow conventional coding paradigms in which viewpoints are discretely represented on 2-D regular grids.

Acoustic event detection deals with the acoustic signals to determine the sound type and to estimate the audio event boundaries. Multi-label classification based approaches are commonly used to detect the frame wise event types with a median filter applied to determine the happening acoustic events. However, the multi-label classifiers are trained only on the acoustic event types ignoring the frame position within the audio events.

In this article, we study resilient distributed diffusion for multi-task estimation in the presence of adversaries where networked agents must estimate distinct but correlated states of interest by processing streaming data. We show that in general diffusion strategies are not resilient to malicious agents that do not adhere to the diffusion-based information processing rules. 

Outdoor images are subject to degradation regarding contrast and color because atmospheric particles scatter incoming light to a camera. Existing haze models that employ model-based dehazing methods cannot avoid the dehazing artifacts. These artifacts include color distortion and overenhancement around object boundaries because of the incorrect transmission estimation from a depth error in the skyline and the wrong haze information, especially in bright objects.

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel