IEEE TMM Article

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

IEEE TMM Article

In this paper, we propose a coding tree unit (CTU)-level rate control scheme from the perspective of SSIM-based rate-distortion optimization to improve the coding efficiency. First, we establish the SSIM-based rate-distortion model based on the divisive normalization scheme, which characterizes the relationship between the local visual quality and the coding bits.

With the rapid popularization of mobile intelligent terminals, mobile video and cloud services applications are widely used in people's lives. However, the resource-constrained characteristic of the terminals and the enormous amount of video information make the efficient terminal-to-cloud data upload a challenge.

Multimedia streams consume a significant chunk of the consumer Internet traffic exchanged and will continue to do so due to the ever-increasing connection among people, businesses, and industries. To cope with the deviation of the Internet's intended use, unreliable underlying infrastructure, and best effort protocols while leveraging existing technologies...

The saliency detection technologies are very useful to analyze and extract important information from given multimedia data, and have already been extensively used in many multimedia applications. Past studies have revealed that utilizing the global cues is effective in saliency detection. Nevertheless, most of prior works mainly considered the single-scale segmentation when the global cues are employed. In this paper, we attempt to incorporate the multi-scale global cues for saliency detection problem. 

With the development of video coding technology, high-efficiency video coding (HEVC) has become a promising alternative, compared with the previous coding standards, for example, H.264. In general, H.264 to HEVC transcoding can be accomplished by fully H.264 decoding and fully HEVC encoding, which suffers from considerable time consumption on the brute-force search of the HEVC coding tree unit (CTU) partition for rate-distortion optimization (RDO).

Predicting articulatory movements from audio or text has diverse applications, such as speech visualization. Various approaches have been proposed to solve the acoustic-articulatory mapping problem. However, their precision is not high enough with only acoustic features available. Recently, deep neural network (DNN) has brought tremendous success in various fields, like speech recognition and image processing.

We propose a novel technique for steganography on 3-D meshes so as to resist steganalysis. The majority of existing methods modulate vertex coordinates to embed messages in a nonadaptive way. We take account of complexity of local regions as joint distortion of a triple unit (vertice) and coding method such as syndrome trellis codes to adaptively embed messages, which owns stronger security with respect to existing steganalysis.

In general, low-rank representation (LRR) aims to find the lowest rank representation with respect to a dictionary. In fact, the dictionary is a key aspect of low-rank representation. However, a lot of low-rank representation methods usually use the data itself as a dictionary (i.e., a fixed dictionary), which may degrade their performances due to the lack of clustering ability of a fixed dictionary.

The partition algorithm as a digital image processing technique is significant to many applications, such as data encryption, image denoising, and 3-D reconstruction. In order to achieve well partition that can availably reduce the distortion phenomenon, a novel approach named image adaptive triangular partition (IATP) is proposed, which considers the grayscale distribution of the image and removes...

The problem of authenticating a re-sampled image has been investigated over many years. Currently, however, little research proposes a statistical model-based test, resulting in that statistical performance of the resampling detector could not be completely analyzed. To fill the gap, we utilize a parametric model to expose the traces of resampling forgery, which is described with the distribution of residual noise.

Pages

SPS on Twitter

  • Join SPS President Ahmed Tewfik on Wednesday, 22 September for the IEEE Signal Processing Society Town Hall in conj… https://t.co/31AOCWXvam
  • DEADLINE EXTENDED: The deadline to apply to PROGRESS at ICIP 2021 has been extended to this Thursday, 16 September!… https://t.co/8V2O4lpXr9
  • Voting is now live for the 5-Minute Video Clip Contest! Support SPS students by watching their videos on this year'… https://t.co/PTXiUzRI1u
  • Our newly-formed Synthetic Aperture Standards Committee is now recruiting new members for its initial roster! Check… https://t.co/RcMuQB86kR
  • PROGRESS returns in conjunction with ICIP 2021! Join us 17-18 September for an exciting new program and plenary spe… https://t.co/yJ9rMG73uu

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar