Skip to main content

TSIPN Volume 6 | 2020

Bandwidth-Constrained Decentralized Detection of an Unknown Vector Signal via Multisensor Fusion

Decentralized detection is one of the key tasks that a wireless sensor network (WSN) is faced to accomplish. Among several decision criteria, the Rao test is able to cope with an unknown (but parametrically-specified) sensing model, while keeping computational simplicity. To this end, the Rao test is employed in this paper to fuse multivariate data measured by a set of sensor nodes, each observing the target (or the desired) event via a nonlinear mapping function. 

Read more

Convex Combination of Diffusion Strategies Over Networks

Combining diffusion strategies with complementary properties enables enhanced performance when they can be run simultaneously. In this article, we first propose two schemes for the convex combination of two diffusion strategies, namely, the power-normalized scheme and the sign-regressor scheme. Then, we conduct theoretical analysis for one of the schemes, i.e., the power-normalized one.

Read more

Massively Distributed Graph Distances

Graph distance (or similarity) scores are used in several graph mining tasks, including anomaly detection, nearest neighbor and similarity search, pattern recognition, transfer learning, and clustering. Graph distances that are metrics and, in particular, satisfy the triangle inequality, have theoretical and empirical advantages. 

Read more

Fast-and-Secure State-Estimation in Dynamic-Control Over Communication Channels: A Game-Theoretical Viewpoint

Control over noisy communication-channels” invented by Sahai-Mitter-and-Tatikonda is a prominent topic. In this context, the latency-and-reliability trade-off is considered by responding to the following: How much fast? How much secure? For a stochastic-mean-field-game (S-MFG), we assign the source-codes as the agents. Additionally, the total-Reward is the Volume of the maximum secure lossy source-coding-rate achievable between a set of Sensors, and the Fusion-Centre (FC) set – including intercepting-Byzantines.

Read more

Bearing Rigidity-Based Localizability Analysis for Wireless Sensor Networks

The localizability analysis for wireless sensor network is of great significance to network localization, and topology control. In this paper, the localizability problem for the bearing-based localization is investigated. An identification method for bearing rigid component is presented, and the localizability is studied for the determined bearing rigid component. In the identification process for bearing rigid component, the center node is introduced, and an approach for identifying the bearing rigid component is proposed based on the characteristic of the bearing rigid graph by using the center nodes.

Read more

Mask Combination of Multi-Layer Graphs for Global Structure Inference

Structure inference is an important task for network data processing and analysis in data science. In recent years, quite a few approaches have been developed to learn the graph structure underlying a set of observations captured in a data space. Although real-world data is often acquired in settings where relationships are influenced by a priori known rules, such domain knowledge is still not well exploited in structure inference problems.

Read more