TSIPN Volume 6 | 2020

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

February, 2020

TSIPN Volume 6 | 2020

A central problem in analog wireless sensor networks is to design the gain or phase-shifts of the sensor nodes (i.e. the relaying configuration) in order to achieve an accurate estimation of some parameter of interest at a fusion center, or more generally, at each node by employing a distributed parameter estimation scheme.

In this paper, we propose a communication- and computation-efficient algorithm to solve a convex consensus optimization problem defined over a decentralized network. A remarkable existing algorithm to solve this problem is the alternating direction method of multipliers (ADMM), in which at every iteration every node updates its local variable through combining neighboring variables and solving an optimization subproblem.

In this article, we study resilient distributed diffusion for multi-task estimation in the presence of adversaries where networked agents must estimate distinct but correlated states of interest by processing streaming data. We show that in general diffusion strategies are not resilient to malicious agents that do not adhere to the diffusion-based information processing rules. 

SPS on Twitter

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar