Convex Combination of Diffusion Strategies Over Networks

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Convex Combination of Diffusion Strategies Over Networks

Danqi Jin; Jie Chen; Cédric Richard; Jingdong Chen; Ali H. Sayed

Combining diffusion strategies with complementary properties enables enhanced performance when they can be run simultaneously. In this article, we first propose two schemes for the convex combination of two diffusion strategies, namely, the power-normalized scheme and the sign-regressor scheme. Then, we conduct theoretical analysis for one of the schemes, i.e., the power-normalized one. An analysis of universality shows that it cannot perform worse than any of its component strategies in terms of the excess mean-square-error (EMSE) at steady state, and sometimes even better. An analysis of stability also reveals that it is more stable than affine combination schemes already proposed by the authors in the literature. Next, several adjustments are proposed to further improve the performance of convex combination schemes. A discussion about the computational and communication complexity is provided, as well as a comparison between convex and affine combination schemes. Finally, simulation results are shown to demonstrate their effectiveness, the accuracy of the theoretical results, and the improved stability of the convex power-normalized scheme over the affine one.

SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting…
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in…
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat…
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special…
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:…

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel