IEEE TSIPN Article

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

IEEE TSIPN Article

This article proposes a distributed time-varying optimization approach to address the dynamic resource allocation problem, leveraging a sliding mode technique. The algorithm integrates a fixed-time sliding mode component to ensure that the global equality constraints are met, and is coupled with a fixed-time distributed control mechanism involving the nonsmooth consensus idea for attaining the system's optimal state.

In this paper, a memory-enhanced distributed accelerated algorithm is proposed for solving large-scale systems of linear equations within the context of multi-agent systems. By employing a local predictor consisting of a linear combination of the nodes' current and previous values, the inclusion of two memory taps can be characterized such that the convergence of the distributed solution algorithm for coordinated computation is accelerated.

Deep matrix factorization (DMF) has the capability to discover hierarchical structures within raw data by factorizing matrices layer by layer, allowing it to utilize latent information for superior clustering performance. However, DMF-based approaches face limitations when dealing with complex and nonlinear raw data.

Graph Neural Networks (GNNs) have shown great promise in modeling relationships between nodes in a graph, but capturing higher-order relationships remains a challenge for large-scale networks. Previous studies have primarily attempted to utilize the information from higher-order neighbors in the graph, involving the incorporation of powers of the shift operator, such as the graph Laplacian or adjacency matrix.

This paper investigates the probability-guaranteed distributed H filtering problem for stochastic time-varying systems over sensor networks. The measurements from sensing nodes are sampled nonuniformly before being received by filters and the sampling processes are modeled by a set of Markov chains.

This work explores the challenging problems of nonlinear dynamics, nonaffine structures, heterogeneous properties, and deception attack together and proposes a novel distributed model-free adaptive predictive control (DMFAPC) for multiple-input-multiple-output (MIMO) multi-agent systems (MASs). A dynamic linearization method is introduced to address the nonlinear heterogeneous dynamics which is transformed as the unknown parameters in the obtained linear data model.

Representation learning considering high-order relationships in data has recently shown to be advantageous in many applications. The construction of a meaningful hypergraph plays a crucial role in the success of hypergraph-based representation learning methods, which is particularly useful in hypergraph neural networks and hypergraph signal processing.

The Random Dot Product Graph (RDPG) is a generative model for relational data, where nodes are represented via latent vectors in low-dimensional Euclidean space. RDPGs crucially postulate that edge formation probabilities are given by the dot product of the corresponding latent positions. Accordingly, the embedding task of estimating these vectors from an observed graph is typically posed as a low-rank matrix factorization problem.

This paper examines the problem of bipartite consensus for Takagi-Sugeno fuzzy multi-agent systems subject to uncertainties. The principal intention of this work is to develop a non-fragile controller through which the considered multi-agent system can achieve bipartite consensus. An undirected signed graph is considered to describe the cooperative and competitive interaction among neighboring agents.

This paper focuses on the constrained optimization problem where the objective function is composed of smooth (possibly nonconvex) and nonsmooth parts. The proposed algorithm integrates the successive convex approximation (SCA) technique with the gradient tracking mechanism that aims at achieving a linear convergence rate and employing the momentum term to regulate update directions in each time instant. 

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel