1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
In this article, we study resilient distributed diffusion for multi-task estimation in the presence of adversaries where networked agents must estimate distinct but correlated states of interest by processing streaming data. We show that in general diffusion strategies are not resilient to malicious agents that do not adhere to the diffusion-based information processing rules. In particular, by exploiting the adaptive weights used for diffusing information, we develop time-dependent attack models that drive normal agents to converge to states selected by the attacker. We show that an attacker that has complete knowledge of the system can always drive its targeted agents to its desired estimates. Moreover, an attacker that does not have complete knowledge of the system including streaming data of targeted agents or the parameters they use in diffusion algorithms, can still be successful in deploying an attack by approximating the needed information. The attack models can be used for both stationary and non-stationary state estimation. In addition, we present and analyze a resilient distributed diffusion algorithm that is resilient to any data falsification attack in which the number of compromised agents in the local neighborhood of a normal agent is bounded. The proposed algorithm guarantees that all normal agents converge to their true target states if appropriate parameters are selected. We also analyze trade-off between the resilience of distributed diffusion and its performance in terms of steady-state mean-square-deviation (MSD) from the correct estimates. Finally, we evaluate the proposed attack models and resilient distributed diffusion algorithm using stationary and non-stationary multi-target localization.