IEEE TMM Article

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

IEEE TMM Article

Wavelet transform is a powerful tool for multiresolution time-frequency analysis. It has been widely adopted in many image processing tasks, such as denoising, enhancement, fusion, and especially compression. Wavelets lead to the successful image coding standard JPEG-2000.

In this paper, a novel single image super-resolution (SR) method based on progressive-iterative approximation is proposed. To preserve textures and clear edges, the image SR reconstruction is treated as an image progressive-iterative fitting procedure and achieved by iterative interpolation. 

In High Efficiency Video Coding (HEVC), multiple-QP (quantization parameter) optimization can adapt to a local video content. However, the multiple-QP implementation in the HEVC reference software (HM 16.6) achieves the best QP value for each coding block with a large amount of computational complexity.

Recent efforts have been made on acoustic scene classification in the audio signal processing community. In contrast, few studies have been conducted on acoustic scene clustering, which is a newly emerging problem. Acoustic scene clustering aims at merging the audio recordings of the same class of acoustic scene into a single cluster without using prior information and training classifiers. In this study, we propose a method for acoustic scene clustering that jointly optimizes the procedures of feature learning and clustering iteration.

Conventional video saliency detection methods frequently follow the common bottom-up thread to estimate video saliency within the short-term fashion. As a result, such methods can not avoid the obstinate accumulation of errors when the collected low-level clues are constantly ill-detected. Also, being noticed that a portion of video frames, which are not nearby the current video frame over the time axis, may potentially benefit the saliency detection in the current video frame.

Recent advances in image acquisition and analysis have resulted in disruptive innovation in physical rehabilitation systems facilitating cost-effective, portable, video-based gait assessment. While these inexpensive motion capture systems, suitable for home rehabilitation, do not generally provide accurate kinematics measurements on their own, image processing algorithms ensure gait analysis that is accurate enough for rehabilitation programs. 

With the development of cloud storage and privacy protection, reversible data hiding in encrypted images (RDHEI) has attracted increasing attention as a technology that can: embed additional data in the image encryption domain, ensure that the embedded data can be extracted error-free, and the original image can be restored losslessly. 

Image compression has been an important research topic for many decades. Recently, deep learning has achieved great success in many computer vision tasks, and its use in image compression has gradually been increasing. In this paper, we present an energy compaction-based image compression architecture using a convolutional autoencoder (CAE) to achieve high coding efficiency. 

Light field (LF) imaging enables new possibilities for digital imaging, such as digital refocusing, changing of focus plane, changing of viewpoint, scene-depth estimation, and 3D scene reconstruction, by capturing both spatial and angular information of light rays. However, one main problem in dealing with LF data is its sheer volume.

The scalable high efficiency video coding (SHVC) is an extension of high efficiency video coding (HEVC). It introduces multiple layers and inter-layer prediction, thus significantly increases the coding complexity on top of the already complicated HEVC encoder. In inter prediction for quality SHVC, in order to determine the best possible mode at each depth level, a coding tree unit can be recursively split into four depth levels.

Pages

SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting… https://t.co/NLH2u19a3y
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in… https://t.co/V6Z3wKGK1O
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat… https://t.co/0aYPMDSWDj
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special… https://t.co/NPCGrSjQbh
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:… https://t.co/4xal7voFER

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel