TMM Articles

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

TMM Articles

TMM Articles

Image-text matching, as a fundamental cross-modal task, bridges the gap between vision and language. The core is to accurately learn semantic alignment to find relevant shared semantics in image and text. Existing methods typically attend to all fragments with word-region similarity greater than empirical threshold zero as relevant shared semantics, e.g. , via a ReLU operation that forces the negative to zero and maintains the positive.

Recent advances in unsupervised domain adaptation (UDA) techniques have witnessed great success in cross-domain computer vision tasks, enhancing the generalization ability of data-driven deep learning architectures by bridging the domain distribution gaps.

Despite the development of computer vision techniques, the micro-expression (ME) recognition task still remains a great challenge because MEs have very low intensity and short duration. However, the ME recognition is of great significance since it provides important clues for real affective states detection. This paper proposes a novel Block Division Convolutional Network (BDCNN) with the implicit deep features augmentation. 

Cross-domain Facial Expression Recognition (FER) aims to safely transfer the learned knowledge from labeled source data to unlabeled target data, which is challenging due to the subtle difference between various expressions and the large discrepancy between domains. Existing methods mainly focus on reducing the domain shift for transferable features but fail to learn discriminative representations for recognizing facial expression, which may result in negative transfer under cross-domain settings.

We introduce a Gaussian Mixture Model (GMM) framework for 3D holoscopic image compression in this paper. The elemental-images of the 3D holoscopic image are predicted using GMM and the parameters of GMM are estimated using the common Expectation-Maximization (EM) algorithm. GMM Model Optimization (GMO) is used in this framework to select the optimal number of distributions and avoid local optimum of EM at the same time.

Current approaches for human pose estimation in videos can be categorized into per-frame and warping-based methods. Both approaches have their pros and cons. For example, per-frame methods are generally more accurate, but they are often slow. Warping-based approaches are more efficient, but the performance is usually not good. To bridge the gap, in this paper, we propose a novel fast framework for human pose estimation to meet the real-time inference with controllable accuracy degradation in compressed video domain. 

Deep learning-based blind image deblurring plays an essential role in solving image blur since all existing kernels are limited in modeling the real world blur. Thus far, researchers focus on powerful models to handle the deblurring problem and achieve decent results. For this work, in a new aspect, we discover the great opportunity for image enhancement (e.g., deblurring) directly from RAW images and investigate novel neural network structures benefiting RAW-based learning.

The pedestrian attribute recognition aims at generating the structured description of pedestrian, which plays an important role in surveillance. However, it is difficult to achieve accurate recognition results due to diverse illumination, partial body occlusion and limited resolutions. Therefore, this paper proposes a comprehensive relationship framework for comprehensively describing and utilizing relations among attributes, describing different type of relations in the same dimension, and implementing complex transfers of relations in a GCN manner. 

In this paper, we present LensCast, a novel cross-layer video transmission framework for wireless networks, which seamlessly integrates millimeter wave (mmWave) lens multiple-input multiple-output (MIMO) with robust video transmission. LensCast is designed to exploit the video content diversity at the application layer, together with the spatial path diversity of lens antenna array at the physical layer, to achieve graceful video transmission performance under varying channel conditions.

Low light images suffer from a low dynamic range and severe noise due to low signal-to-noise ratio (SNR). In this paper, we propose joint contrast enhancement and noise reduction of low light images via just-noticeable-difference (JND) transform. We adopt the JND transform to achieve both contrast enhancement and noise reduction based on human visual perception.


SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting…
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in…
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat…
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special…
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:…

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar