IEEE TSP Article

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

IEEE TSP Article

This paper reformulates adaptive filters (AFs) in the framework of geometric algebra (GA), developing a complete study of the resulting geometric-algebra adaptive filters (GAAFs). They are generated by formulating the underlying minimization problem (a deterministic cost function) from the perspective of GA, a comprehensive mathematical language well suited for the description of geometric transformations.

We exploit persymmetric structures to design a generalized likelihood ratio test for detecting subspace signals in homogeneous Gaussian clutter with unknown covariance matrix. The subspace model is employed to account for mismatches in the target steering vector. An exact but finite-sum expression for the probability of false alarm of the proposed detector is derived, which is verified using Monte Carlo simulations.

The robust adaptive beamforming design problem based on estimation of the signal-of-interest (SOI) steering vector is considered in the paper. The common criteria to find the best estimate of the steering vector are the beamformer output signal-to-noise-plus-interference ratio (SINR) and output power, while the constraints assume as little as possible prior inaccurate knowledge about the SOI, the propagation media, and the antenna array.

We consider the problem of jointly recovering the vector b and the matrix C from noisy measurementsY=A(b)C+W , where A() is a known affine linear function of b (i.e., A(b)=A0 +Qi=1biAi with known matrices Ai ). This problem has applications in matrix completion, robust PCA, dictionary learning, self-calibration, blind deconvolution, joint-channel/symbol estimation, compressive sensing with matrix uncertainty, and many other tasks.

In this paper, we address the problem of recovering point sources from two-dimensional low-pass measurements, which is known as the super-resolution problem. This is the fundamental concern of many applications such as electronic imaging, optics, microscopy, and line spectral estimations. We assume that the point sources are located in the square [0,1]2 with unknown locations and complex amplitudes.

In this paper, we bridge the problem of (provably) learning shallow neural networks with the well-studied problem of low-rank matrix estimation. In particular, we consider two-layer networks with quadratic activations, and focus on the under-parameterized regime where the number of neurons in the hidden layer is smaller than the dimension of the input.

In this paper, we aim at designing sets of binary sequences with good aperiodic/periodic auto- and cross-correlation functions for multiple-input multiple-output (MIMO) radar systems. We show that such a set of sequences can be obtained by minimizing a weighted sum of peak sidelobe level (PSL) and integrated sidelobe level (ISL) with the binary element constraint at the design stage.

The IEEE Signal Processing Society congratulates the following recipients who will receive the 2018 IEEE Signal Processing Society paper awards for their paper published in the IEEE Transactions on Signal Processing. Presentation of the paper awards will take place at ICASSP 2019 in Brighton, U.K.

A task of major practical importance in network science is inferring the graph structure from noisy observations at a subset of nodes. Available methods for topology inference typically assume that the process over the network is observed at all nodes. However, application-specific constraints may prevent acquiring network-wide observations.

This paper discusses greedy methods for sensor placement in linear inverse problems. We comprehensively review the greedy methods in the sense of optimizing the mean squared error (MSE), the volume of the confidence ellipsoid, and the worst-case error variance. We show that the greedy method of optimizing an MSE related cost function can find a near-optimal solution.


SPS on Twitter

  • Our Biomedical Imaging and Signal Processing Webinar Series continues on Tuesday, 5 July when Michael Unser present…
  • Join us TODAY at 11:00 AM ET when the Brain Space Initiative Talk Series continues with Dr. Tianming Liu presenting…
  • Our 75th anniversary is approaching in 2023, and we're celebrating with a Special Issue of IEEE Signal Processing M…
  • The SPS Webinar Series continues on Monday, 20 June when Dr. Zhijin Qin presents "Semantic Communications: Principl…
  • CALL FOR PROPOSALS: Now seeking proposals for the 2024 IEEE International Workshop on Machine Learning for Signal P…

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar