Super-Resolution Blind Channel-and-Signal Estimation for Massive MIMO With One-Dimensional Antenna Array

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Super-Resolution Blind Channel-and-Signal Estimation for Massive MIMO With One-Dimensional Antenna Array

Hang Liu; Xiaojun Yuan; Ying Jun Zhang

In this paper, we study blind channel-and-signal estimation by exploiting the burst-sparse structure of angular-domain propagation channels in massive MIMO systems. The state-of-the-art approach utilizes the structured channel sparsity by sampling the angular-domain channel representation with a uniform angle-sampling grid, a.k.a. virtual channel representation. However, this approach is only applicable to uniform linear arrays and may cause a substantial performance loss due to the mismatch between the virtual representation and the true angle information. To tackle these challenges, we propose a sparse channel representation with a super-resolution sampling grid and a hidden Markovian support. Based on this, we develop a novel approximate inference based blind estimation algorithm to estimate the channel and the user signals simultaneously, with emphasis on the adoption of the expectation-maximization method to learn the angle information. Furthermore, we demonstrate the low-complexity implementation of our algorithm, making use of factor graph and message passing principles to compute the marginal posteriors. Numerical results show that our proposed method significantly reduces the estimation error compared to the state-of-the-art approach under various settings, which verifies the efficiency and robustness of our method.

SPS on Twitter

  • The SPS Webinar Series continues on Friday, 14 October when Dr. Peilan Wang and Dr Jun Fang present "Channel State…
  • Happy IEEE Day! The IEEE Signal Processing Society is celebrating with 50% off membership for Professionals and Stu…
  • SPS is proud to participate in IEEE's new Multiple Society Discount Program! Join two or more participating societi…
  • IEEE Day is October 4th. Celebrate IEEE Day by attending a local event. Visit the IEEE Day site for a complete list…
  • The Biomedical Imaging and Signal Processing Webinar Series continues on Tuesday, 4 October when Selin Aviyente pre…

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar