TSP Volume 67 Issue 16

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

2019

TSP Volume 67 Issue 16

Sequential Monte Carlo (SMC) methods comprise one of the most successful approaches to approximate Bayesian filtering. However, SMC without a good proposal distribution can perform poorly, in particular in high dimensions. We propose nested sequential Monte Carlo, a methodology that generalizes the SMC framework by requiring only approximate, properly weighted, samples from the SMC proposal distribution, while still resulting in a correct SMC algorithm. 

The paper derives the stability bound of the initial mean-square deviation of an adaptive filtering algorithm based on minimizing the 2 L th moment of the estimation error, with L being an integer greater than 1. The analysis is done for a time-invariant plant with even input probability density function. Dependence of the stability bound on the algorithm step-size, type of the noise distribution, signal-to-noise ratio (SNR), and L is studied.

Although massive multiple-input multiple-output (MIMO) promises high spectral efficiency, there are several issues that significantly limit the potential gain of massive MIMO, such as severe inter-cell interference, huge channel state information (CSI) overhead/delay, high cost and power consumption of RF chains, and user fairness. 

Much effort has been devoted to recovering sparse signals from one-bit measurements in recent years. However, it is still quite challenging to recover signals with high fidelity, which is desired in practical one-bit compressive sensing (1-bit CS) applications. We introduce the notion of Schur-concavity in this paper and propose to construct signals by taking advantage of Schur-Concave functions , which are capable of enhancing sparsity.

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel