IEEE Transactions on Signal Processing

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Communication base stations can achieve high-precision tracking and accurate classification for multiple extended targets in the context of integrated communication and sensing by transmitting wideband signal. However, the time resources of the base stations are often limited. In the time-division operation mode, part of the time resources must be reserved to guarantee communication performance, while the rest of the resources must be properly allocated for better multi-target sensing performance.

We consider a least absolute deviation (LAD) approach to the robust phase retrieval problem that aims to recover a signal from its absolute measurements corrupted with sparse noise. To solve the resulting non-convex optimization problem, we propose a robust alternating minimization (Robust-AM) derived as an unconstrained Gauss-Newton method.

This paper explores constrained non-convex personalized federated learning (PFL), in which a group of workers train local models and a global model, under the coordination of a server. To address the challenges of efficient information exchange and robustness against the so-called Byzantine workers, we propose a projected stochastic gradient descent algorithm for PFL that simultaneously ensures Byzantine-robustness and communication efficiency. 

Steganography is the art of covert communication that pursues the secrecy of concealment. In adaptive steganography, the most commonly used framework of steganography, the sender embeds a “secret message” signal within another “cover” signal with respect to a certain adaptive distortion function that measures the distortion incurred, contributing to the composite “stego” signal that resembles the cover, and the receiver extracts the “secret message” signal from the stego.

In this manuscript, we propose to use a variational autoencoder-based framework for parameterizing a conditional linear minimum mean squared error estimator. The variational autoencoder models the underlying unknown data distribution as conditionally Gaussian, yielding the conditional first and second moments of the estimand, given a noisy observation.

The modeling of time-varying graph signals as stationary time-vertex stochastic processes permits the inference of missing signal values by efficiently employing the correlation patterns of the process across different graph nodes and time instants. In this study, we propose an algorithm for computing graph autoregressive moving average (graph ARMA) processes based on learning the joint time-vertex power spectral density of the process from its incomplete realizations for the task of signal interpolation. 

Conventional beamforming methods for intelligent reflecting surfaces (IRSs) or reconfigurable intelligent surfaces (RISs) typically entail the full channel state information (CSI). However, the computational cost of channel acquisition soars exponentially with the number of IRSs. To bypass this difficulty, we propose a novel strategy called blind beamforming that coordinates multiple IRSs by means of statistics without knowing CSI.

Algorithmic solutions for multi-object tracking (MOT) are a key enabler for applications in autonomous navigation and applied ocean sciences. State-of-the-art MOT methods fully rely on a statistical model and typically use preprocessed sensor data as measurements. In particular, measurements are produced by a detector that extracts potential object locations from the raw sensor data collected at discrete time steps. This preparatory processing step reduces data flow and computational complexity but may result in a loss of information. 

This paper proposes an interpretable ensembled seizure detection procedure using electroencephalography (EEG) data, which integrates data driven features and clinical knowledge while being robust against artifacts interference.

This paper deals with joint adaptive radar detection and target bearing estimation in the presence of mutual coupling among the array elements. First of all, a suitable model of the signal received by the multichannel radar is developed via a linearization procedure of the Uniform Linear Array (ULA) manifold around the nominal array looking direction together with the use of symmetric Toeplitz structured matrices to represent the mutual coupling effects. Hence, the Generalized Likelihood Ratio Test (GLRT) detector is evaluated under the assumption of homogeneous radar environment.

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel