IEEE Transactions on Signal Processing

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Structural equation models (SEMs) and vector autoregressive models (VARMs) are two broad families of approaches that have been shown useful in effective brain connectivity studies. While VARMs postulate that a given region of interest in the brain is directionally connected to another one by virtue of time-lagged influences, SEMs assert that directed dependencies arise due to instantaneous effects...

We address a robust detection problem for MIMO radars in Gaussian noise with unknown covariance matrix, for the mismatched case where the nominal transmit (or receive) steering vector may not be aligned with the true transmit (or receive) steering vector. Subspace models are adopted for taking into account these mismatches.

Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. 

Nonlinear static multiple-input multiple-output (MIMO) systems are analyzed. The matrix formulation of Bussgang's theorem for complex Gaussian signals is rederived and put in the context of the multivariate cumulant series expansion. The attenuation matrix is a function of the input signals’ covariance and the covariance of the input and output signals.

We consider the problem of decentralized consensus optimization, where the sum of n smooth and strongly convex functions are minimized over n distributed agents that form a connected network. In particular, we consider the case that the communicated local decision variables among nodes are quantized in order to alleviate the communication bottleneck in distributed optimization.

This paper studies resilient distributed estimation under measurement attacks. A set of agents each makes successive local, linear, noisy measurements of an unknown vector field collected in a vector parameter. The local measurement models are heterogeneous across agents and may be locally unobservable for the unknown parameter.

The problem of detecting a high-dimensional signal based on compressive measurements in the presence of an eavesdropper (Eve) is studied in this paper. We assume that a large number of sensors collaborate to detect the presence of sparse signals while the Eve has access to all the information transmitted by the sensors to the fusion center (FC). 

The topic of sequence design has received considerable attention due to its wide applications in active sensing. One important desired property for the design sequence is the spectral shape. In this paper, the sequence design problem is formulated by minimizing the regularized spectral level ratio subject to a peak-to-average power ratio constraint.

This paper considers and analyzes the performance of semiblind, training, and data-aided channel estimation schemes for multiple-input multiple-output (MIMO) filter bank multicarrier (FBMC) systems with offset quadrature amplitude modulation.

In this paper, we study blind channel-and-signal estimation by exploiting the burst-sparse structure of angular-domain propagation channels in massive MIMO systems. The state-of-the-art approach utilizes the structured channel sparsity by sampling the angular-domain channel representation with a uniform angle-sampling grid, a.k.a. virtual channel representation.

Pages

SPS on Twitter

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar