IEEE TSP Article

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

IEEE TSP Article

A task of major practical importance in network science is inferring the graph structure from noisy observations at a subset of nodes. Available methods for topology inference typically assume that the process over the network is observed at all nodes. However, application-specific constraints may prevent acquiring network-wide observations.

This paper discusses greedy methods for sensor placement in linear inverse problems. We comprehensively review the greedy methods in the sense of optimizing the mean squared error (MSE), the volume of the confidence ellipsoid, and the worst-case error variance. We show that the greedy method of optimizing an MSE related cost function can find a near-optimal solution.

Linear canonical transforms (LCTs) are of importance in many areas of science and engineering with many applications. Therefore, a satisfactory discrete implementation is of considerable interest. Although there are methods that link the samples of the input signal to the samples of the linear canonical transformed output signal, no widely-accepted definition of the discrete LCT has been established.

Radio tomographic imaging (RTI) is an emerging technology to locate physical objects in a geographical area covered by wireless networks. From the attenuation measurements collected at spatially distributed sensors, radio tomography capitalizes on spatial loss fields (SLFs) measuring the absorption of radio frequency waves at each location along the propagation path.

In this paper, we propose a regular vine copula based methodology for the fusion of correlated decisions. Regular vine copula is an extremely flexible and powerful graphical model to characterize complex dependence among multiple modalities.

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel