Skip to main content

TSP Volume 67 Issue 10

Communication-Censored ADMM for Decentralized Consensus Optimization

In this paper, we devise a communication-efficient decentralized algorithm, named as communication-censored alternating direction method of multipliers (ADMM) (COCA), to solve a convex consensus optimization problem defined over a network. Similar to popular decentralized consensus optimization algorithms such as ADMM, at every iteration of COCA, a node exchanges its local variable with neighbors, and then updates its local variable according to the received neighboring variables and its local cost function. 

Read more

Source Resolvability of Spatial-Smoothing-Based Subspace Methods: A Hadamard Product Perspective

A major drawback of subspace methods for direction-of-arrival estimation is their poor performance in the presence of coherent sources. Spatial smoothing is a common solution that can be used to restore the performance of these methods in such a case at the cost of increased array size requirement. In this paper, a Hadamard product perspective of the source resolvability problem of spatial-smoothing-based subspace methods is presented.

Read more