The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
In this paper, we propose a regular vine copula based methodology for the fusion of correlated decisions. Regular vine copula is an extremely flexible and powerful graphical model to characterize complex dependence among multiple modalities. It can express a multivariate copula by using a cascade of bivariate copulas, the so-called pair copulas. Assuming that local detectors are single threshold binary quantizers and taking complex dependence among sensor decisions into account, we design an optimal fusion rule using a regular vine copula under the Neyman–Pearson framework. In order to reduce the computational complexity resulting from the complex dependence, we propose an efficient and computationally light regular vine copula based optimal fusion algorithm. Numerical experiments are conducted to demonstrate the effectiveness of our approach.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.