The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
In this paper, we bridge the problem of (provably) learning shallow neural networks with the well-studied problem of low-rank matrix estimation. In particular, we consider two-layer networks with quadratic activations, and focus on the under-parameterized regime where the number of neurons in the hidden layer is smaller than the dimension of the input. Our main approach is to “lift” the learning problem into a higher dimension, which enables us to borrow algorithmic techniques from low-rank matrix estimation. Using this intuition, we propose three novel, non-convex training algorithms. We support our algorithms with rigorous theoretical analysis, and show that all three enjoy a linear convergence, fast running time per iteration, and near-optimal sample complexity. Finally, we complement our theoretical results with numerical experiments.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2025 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.