Semi-Blind, Training, and Data-Aided Channel Estimation Schemes for MIMO-FBMC-OQAM Systems

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Semi-Blind, Training, and Data-Aided Channel Estimation Schemes for MIMO-FBMC-OQAM Systems

By: 
Prem Singh; Himanshu B. Mishra; Aditya K. Jagannatham; K. Vasudevan

This paper considers and analyzes the performance of semiblind, training, and data-aided channel estimation schemes for multiple-input multiple-output (MIMO) filter bank multicarrier (FBMC) systems with offset quadrature amplitude modulation. A semiblind MIMO-FBMC (SB-MF) channel estimator is developed that exploits both the training symbols and second-order statistical properties of the data symbols, which leads to a significant decrease in the mean squared error (MSE) with respect to its conventional training-based counterpart. Its performance is compared with that of the interference approximation method-based least squares MIMO-FBMC (LS-MF) channel estimator, wherein the channel is estimated using exclusively training symbols. The Cramér–Rao lower bounds are derived to characterize the MSE of the proposed and LS-MF estimators, which interestingly demonstrate that while the MSE per parameter of the proposed scheme decreases with the number of receive antennas, it remains constant for the training-based scheme. The resulting bit error rates are derived for the proposed SB-MF and LS-MF channel estimators. An expectation maximization-based data-aided MIMO-FBMC channel estimator is also investigated that performs iterative maximum a posteriori channel estimation in the E-step followed by data detection in the M-step. A comparative analysis is presented for the computational complexities of the various schemes. Simulation results with practical channel models demonstrate that the proposed semiblind scheme significantly outperforms the training-based and data-aided schemes.

SPS on Twitter

  • The SPS Webinar Series continues on Monday, 22 August when Dr. Yu-Huan Wu and Dr. Shanghua Gao present “Towards Des… https://t.co/ZkHjQLLn7L
  • CALL FOR PAPERS: The IEEE/ACM Transactions on Audio, Speech, and Language Processing is now accepting submissions f… https://t.co/wkoVBKfE5j
  • DEADLINE EXTENDED: The IEEE Journal of Selected Topics in Signal Processing is now accepting submissions for a Spec… https://t.co/qoRbzFeMLL
  • Our Information Forensics and Security Webinar Series continues on Tuesday, 23 August when Dr. Anderson Rocha prese… https://t.co/q48hnIMfan
  • There is still time to submit your proposal to host the 2023 IEEE Workshop on Automatic Speech Recognition and Unde… https://t.co/y1VxOKiEwb

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar