Semi-Blind, Training, and Data-Aided Channel Estimation Schemes for MIMO-FBMC-OQAM Systems

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Semi-Blind, Training, and Data-Aided Channel Estimation Schemes for MIMO-FBMC-OQAM Systems

Prem Singh; Himanshu B. Mishra; Aditya K. Jagannatham; K. Vasudevan

This paper considers and analyzes the performance of semiblind, training, and data-aided channel estimation schemes for multiple-input multiple-output (MIMO) filter bank multicarrier (FBMC) systems with offset quadrature amplitude modulation. A semiblind MIMO-FBMC (SB-MF) channel estimator is developed that exploits both the training symbols and second-order statistical properties of the data symbols, which leads to a significant decrease in the mean squared error (MSE) with respect to its conventional training-based counterpart. Its performance is compared with that of the interference approximation method-based least squares MIMO-FBMC (LS-MF) channel estimator, wherein the channel is estimated using exclusively training symbols. The Cramér–Rao lower bounds are derived to characterize the MSE of the proposed and LS-MF estimators, which interestingly demonstrate that while the MSE per parameter of the proposed scheme decreases with the number of receive antennas, it remains constant for the training-based scheme. The resulting bit error rates are derived for the proposed SB-MF and LS-MF channel estimators. An expectation maximization-based data-aided MIMO-FBMC channel estimator is also investigated that performs iterative maximum a posteriori channel estimation in the E-step followed by data detection in the M-step. A comparative analysis is presented for the computational complexities of the various schemes. Simulation results with practical channel models demonstrate that the proposed semiblind scheme significantly outperforms the training-based and data-aided schemes.

SPS on Twitter

  • The SPS Webinar Series continues on Monday, 22 August when Dr. Yu-Huan Wu and Dr. Shanghua Gao present “Towards Des…
  • CALL FOR PAPERS: The IEEE/ACM Transactions on Audio, Speech, and Language Processing is now accepting submissions f…
  • DEADLINE EXTENDED: The IEEE Journal of Selected Topics in Signal Processing is now accepting submissions for a Spec…
  • Our Information Forensics and Security Webinar Series continues on Tuesday, 23 August when Dr. Anderson Rocha prese…
  • There is still time to submit your proposal to host the 2023 IEEE Workshop on Automatic Speech Recognition and Unde…

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar