The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
Spoken Language Understanding (SLU) is a critical component of conversational voice assistants, requiring converting user utterances into a structured format for task executions. SLU systems typically consist of an ASR component to convert audio to text and an NLU component to convert text to a tree like structure, however recently, E2E SLU systems have also become of increasing interest in order to increase quality, model efficiency, and data efficiency. In this task, participants are asked to leverage the Spoken Task Oriented Parsing (STOP) dataset, a multi-domain compositional spoken language understanding, to explore E2E spoken language understanding on 3-axis (1) quality (2) on-device (3) low-resource and domain scaling. 5 winners will be selected from this challenge based on different criteria to be invited to submit a 2-page paper to ICASSP 2023.
Visit the Challenge website for details and more information!
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.