The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
We provide an expressive framework that allows analyzing and generating provably secure, state-of-the-art Byzantine fault-tolerant (BFT) protocols over graph of nodes, a notion formalized in the HotStuff protocol. Our framework is hierarchical, including three layers. The top layer is used to model the message pattern and abstract core functions on which BFT algorithms can be built. The intermediate layer provides the core functions with high-level properties sufficient to prove the security of the top-layer algorithms. The bottom layer presents operational realizations for the core functions. Using our framework, designing a BFT protocol is reduced to instantiating two core functions together with their specific properties. Unlike prior BFT frameworks, our framework can analyze and recast BFT protocols in an exceedingly fine-grained manner. More importantly, our framework can readily generate new BFT protocols. In this paper, we show that the framework allows us to fully specify and formally prove the security for a family of BFT protocols, including known protocols such as HotStuff, Fast-HotStuff, and SBFT. Additionally, we show that our framework can generate four new protocols outperforming existing ones, including 1) two protocols with
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.