Skip to main content

Zero-Shot Learning via Robust Latent Representation and Manifold Regularization

Zero-shot learning (ZSL) for visual recognition aims to accurately recognize the objects of unseen classes through mapping the visual feature to an embedding space spanned by class semantic information. However, the semantic gap across visual features and their underlying semantics is still a big obstacle in ZSL. Conventional ZSL methods construct that the mapping typically focus on the original visual features that are independent of the ZSL tasks, thus degrading the prediction performance.

MISC Array: A New Sparse Array Design Achieving Increased Degrees of Freedom and Reduced Mutual Coupling Effect

Recently, nested and coprime arrays have attracted considerable interest due to their capability of providing increased array aperture, enhanced degrees of freedom (DOFs), and reduced mutual coupling effect compared to uniform linear arrays (ULAs). These features are critical to improving the performance of direction-of-arrival estimation and adaptive beamforming. 

Graph Topology Inference Based on Sparsifying Transform Learning

Graph-based representations play a key role in machine learning. The fundamental step in these representations is the association of a graph structure to a dataset. In this paper, we propose a method that finds a block sparse representation of the data by associating a graph, whose Laplacian matrix admits the sparsifying dictionary as its eigenvectors.