SPL Volume 26 Issue 12

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

December, 2019

SPL Volume 26 Issue 12

A significantly low cost and tractable progressive learning approach is proposed and discussed for efficient spatiotemporal monitoring of a completely unknown, two dimensional correlated signal distribution in localized wireless sensor field. The spatial distribution is compressed into a number of its contour lines and only those sensors that their sensor observations are in a margin of the contour levels are reporting to the information fusion center (FC).

Although deep convolutional neural networks (DCNN) show significant improvement for single depth map (SD) super-resolution (SR) over the traditional counterparts, most SDSR DCNNs do not reuse the hierarchical features for depth map SR resulting in blurred high-resolution (HR) depth maps. They always stack convolutional layers to make network deeper and wider.

SPS on Twitter

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar