TIP Volume 28 Issue 7

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

2019

TIP Volume 28 Issue 7

We present a compression scheme for multiview imagery that facilitates high scalability and accessibility of the compressed content. Our scheme relies upon constructing at a single base view, a disparity model for a group of views, and then utilizing this base-anchored model to infer disparity at all views belonging to the group.

Signal decomposition is a classical problem in signal processing, which aims to separate an observed signal into two or more components, each with its own property. Usually, each component is described by its own subspace or dictionary. Extensive research has been done for the case where the components are additive, but in real-world applications, the components are often non-additive.

The surface normal estimation from photometric stereo becomes less reliable when the surface reflectance deviates from the Lambertian assumption. The non-Lambertian effect can be explicitly addressed by physics modeling to the reflectance function, at the cost of introducing highly nonlinear optimization.

Being able to cover a wide range of views, pan-tilt-zoom (PTZ) cameras have been widely deployed in visual surveillance systems. To achieve a global-view perception of a surveillance scene, it is necessary to generate its panoramic background image, which can be used for the subsequent applications such as road segmentation, active tracking, and so on.

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel