TIP Volume 28 Issue 10

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

October, 2019

TIP Volume 28 Issue 10

We present a novel global non-rigid registration method for dynamic 3D objects. Our method allows objects to undergo large non-rigid deformations and achieves high-quality results even with substantial pose change or camera motion between views. In addition, our method does not require a template prior and uses less raw data than tracking-based methods since only a sparse set of scans is needed.

We study the problem of image alignment for panoramic stitching. Unlike most existing approaches that are feature-based, our algorithm works on pixels directly, and accounts for errors across the whole images globally. Technically, we formulate the alignment problem as rank-1 and sparse matrix decomposition over transformed images, and develop an efficient algorithm for solving this challenging non-convex optimization problem.

Image classification is an essential and challenging task in computer vision. Despite its prevalence, the combination of the deep convolutional neural network (DCNN) and the Fisher vector (FV) encoding method has limited performance since the class-irrelevant background used in the traditional FV encoding may result in less discriminative image features.

SPS on Twitter

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar