Image compression has been an important research topic for many decades. Recently, deep learning has achieved great success in many computer vision tasks, and its use in image compression has gradually been increasing. In this paper, we present an energy compaction-based image compression architecture using a convolutional autoencoder (CAE) to achieve high coding efficiency.
With the development of cloud storage and privacy protection, reversible data hiding in encrypted images (RDHEI) has attracted increasing attention as a technology that can: embed additional data in the image encryption domain, ensure that the embedded data can be extracted error-free, and the original image can be restored losslessly.
We consider the problem of learning a graph from a given set of smooth graph signals. Our graph learning approach is formulated as a constrained quadratic program in the edge weights. We provide an implicit characterization of the optimal solution and propose a tailored ADMM algorithm to solve this problem efficiently.
Observability is a fundamental concept in system inference and estimation. This article is focused on structural observability analysis of Cartesian product networks. Cartesian product networks emerge in variety of applications including in parallel and distributed systems.
We consider a specific graph learning task: reconstructing a symmetric matrix that represents an underlying graph using linear measurements. We present a sparsity characterization for distributions of random graphs (that are allowed to contain high-degree nodes), based on which we study fundamental trade-offs between the number of measurements, the complexity of the graph class, and the probability of error.
In this article, we explore the state-space formulation of a network process to recover from partial observations the network topology that drives its dynamics. To do so, we employ subspace techniques borrowed from system identification literature and extend them to the network topology identification problem.
Space-time adaptive processing (STAP) algorithms with coprime arrays can provide good clutter suppression potential with low cost in airborne radar systems as compared with their uniform linear arrays counterparts. However, the performance of these algorithms is limited by the training samples support in practical applications.
This work presents a generalization of classical factor analysis (FA). Each of M channels carries measurements that share factors with all other channels, but also contains factors that are unique to the channel. Furthermore, each channel carries an additive noise whose covariance is diagonal, as is usual in factor analysis, but is otherwise unknown.
This paper proposes a novel algorithm to determine the optimal orientation of sensing axes of redundant inertial sensors such as accelerometers and gyroscopes (gyros) for increasing the sensing accuracy. In this paper, we have proposed a novel iterative algorithm to find the optimal sensor configuration.
August 11-13, 2021
Note: Location changed to--Virtual Conference
August 12-14, 2020
NOTE: ICAS 2020 has been postponed to 2021
Location: Montreal, QC, Canada
Website-->