Various signal processing applications can be expressed as large-scale optimization problems with a composite objective structure, where the Lipschitz constant of the smooth part gradient is either not known, or its local values may only be a fraction of the global value. The smooth part may be strongly convex as well. The algorithms capable of addressing this problem class in its entirety are black-box accelerated first-order methods, related to either Nesterov's Fast Gradient Method or the Accelerated Multistep Gradient Scheme, which were developed and analyzed using the estimate sequence mathematical framework.