Skip to main content

IEEE SPL Article

New Sets of Quadriphase Cross Z-Complementary Pairs for Preamble Design in Spatial Modulation

Cross Z-complementary pairs (CZCPs) are a special kind of Z-complementary pairs having zero autocorrelation sums around the in-phase position and end-shift position, also having zero cross-correlation sums around the end-shift position. Recent results have shown that CZCPs are very efficient in designing pilot sequences for spatial modulation enabled multiple-input multiple-output (MIMO) systems. In this paper, we propose systematic constructions of binary and quadriphase CZCPs with new lengths of the form 2M, where even-length binary Z-complementary pairs of length M exists.

Read more

On Procrustes Analysis in Hyperbolic Space

Congruent Procrustes analysis aims to find the best matching between two point sets through rotation, reflection and translation. We formulate the Procrustes problem for hyperbolic spaces, review the canonical definition of the center mass for a point set, and give a closed-form solution for the optimal isometry between noise-free point sets. Our algorithm is analogous to the Euclidean Procrustes analysis, with centering and rotation replaced by their hyperbolic counterparts. 

Read more

Color and Geometry Texture Descriptors for Point-Cloud Quality Assessment

Point Clouds (PCs) have recently been adopted as the preferred data structure for representing 3D visual contents. Examples of Point Cloud (PC) applications range from 3D representations of small objects up to large scenes, both still or dynamic in time. PC adoption triggered the development of new coding, transmission, and display methodologies that culminated in new international standards for PC compression. 

Read more

Linguistic Steganography: From Symbolic Space to Semantic Space

Previous works about linguistic steganography such as synonym substitution and sampling-based methods usually manipulate observed symbols explicitly to conceal secret information, which may give rise to security risks. In this letter, in order to preclude straightforward operation on observed symbols, we explored generation-based linguistic steganography in latent space by means of encoding secret messages in the selection of implicit attributes (semanteme) of natural language.

Read more

Simple Yet Effective Way for Improving the Performance of Depth Map Super-Resolution

In depth map super-resolution (SR), a high-resolution color image plays an important role as guidance for preventing blurry depth boundaries. However, excessive/deficient use of the color image features often causes performance degradation such as texture-copying/edge-smoothing in flat/boundary areas. To alleviate these problems, this letter presents a simple yet effective method for enhancing the performance of the SR without requiring significant modifications to the original SR network. To this end, we present a self-selective concatenation (SSC), which is a substitute for the conventional feature concatenation. In the upsampling layers of the SR network, the SSC extracts spatial and channel attention from both color and depth features such that color features can be selectively used for depth SR.

Read more

A Multifamily GLRT for CFAR Detection of Signals in a Union of Subspaces

We consider the problem of detecting an unknown signal that lies in a union of subspaces (UoS) and that is observed in additive white Gaussian noise with unknown variance. The main contribution of this letter is the derivation of a detector that can accommodate a union made of nested subspaces. This detector includes the generalized likelihood ratio test (GLRT) as a special case when the subspace dimensions are all identical. It relies on the framework of multifamily likelihood ratio tests (MFLRT) and is shown by numerical examples to achieve better performance than existing detectors.

Read more

Addressing Missing Labels in Large-Scale Sound Event Recognition Using a Teacher-Student Framework With Loss Masking

The study of label noise in sound event recognition has recently gained attention with the advent of larger and noisier datasets. This work addresses the problem of missing labels, one of the big weaknesses of large audio datasets, and one of the most conspicuous issues for AudioSet. We propose a simple and modelagnostic method based on a teacher-student framework with loss masking to first identify the most critical missing label candidates, and then ignore their contribution during the learning process.

Read more