Skip to main content

IEEE SPL Article

Pyramid-Structured Depth MAP Super-Resolution Based on Deep Dense-Residual Network

Although deep convolutional neural networks (DCNN) show significant improvement for single depth map (SD) super-resolution (SR) over the traditional counterparts, most SDSR DCNNs do not reuse the hierarchical features for depth map SR resulting in blurred high-resolution (HR) depth maps. They always stack convolutional layers to make network deeper and wider.

Read more

Deep Learning Denoising Based Line Spectral Estimation

Many well-known line spectral estimators may experience significant performance loss with noisy measurements. To address the problem, we propose a deep learning denoising based approach for line spectral estimation. The proposed approach utilizes a residual learning assisted denoising convolutional neural network (DnCNN) trained to recover the unstructured noise component, which is used to denoise the original measurements.

Read more

Low-Complexity Joint 2-D DOA and TOA Estimation for Multipath OFDM Signals

The multiple signal classification (MUSIC) algorithmis computationally expensive in the application to joint two-dimensional (2-D) direction-of-arrival (DOA) and time-of-arrival (TOA) estimation based on uniform circular array (UCA) using orthogonal frequency-division multiplexing (OFDM) signal. This letter proposed an efficient way to compute the 3-D spatial-temporal spectrum.

Read more

Deep Learning Denoising Based Line Spectral Estimation

Many well-known line spectral estimators may experience significant performance loss with noisy measurements. To address the problem, we propose a deep learning denoising based approach for line spectral estimation. The proposed approach utilizes a residual learning assisted denoising convolutional neural network (DnCNN) trained to recover the unstructured noise component, which is used to denoise the original measurements.

Read more