Discrete Mumford-Shah on Graph for Mixing Matrix Estimation

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Discrete Mumford-Shah on Graph for Mixing Matrix Estimation

By: 
Yacouba Kaloga; Marion Foare; Nelly Pustelnik; Pablo Jensen

The discrete Mumford-Shah formalism has been introduced for the image denoising problem, allowing to capture both smooth behavior inside an object and sharp transitions on the boundary. In this letter, we propose first to extend this formalism to graphs and to the problem of mixing matrix estimation. New algorithmic schemes with convergence guarantees relying on proximal alternating minimization strategies are derived, and their efficiency (good estimation and robustness to initialization) is evaluated on simulated data, in the context of vote transfer matrix estimation.

SPS on Twitter

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar