The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
Many well-known line spectral estimators may experience significant performance loss with noisy measurements. To address the problem, we propose a deep learning denoising based approach for line spectral estimation. The proposed approach utilizes a residual learning assisted denoising convolutional neural network (DnCNN) trained to recover the unstructured noise component, which is used to denoise the original measurements. Following the denoising step, we employ a popular model order selection method and a subspace line spectral estimator to the denoised measurements for line spectral estimation. Numerical results show that the proposed approach outperforms a recently introduced atomic norm minimization based denoising method and offers a substantial improvement compared with the line spectral estimation results obtained by directly applying the subspace estimator without denoising.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.