Deep Learning Denoising Based Line Spectral Estimation

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Deep Learning Denoising Based Line Spectral Estimation

Yuan Jiang; Hongbin Li; Muralidhar Rangaswamy

Many well-known line spectral estimators may experience significant performance loss with noisy measurements. To address the problem, we propose a deep learning denoising based approach for line spectral estimation. The proposed approach utilizes a residual learning assisted denoising convolutional neural network (DnCNN) trained to recover the unstructured noise component, which is used to denoise the original measurements. Following the denoising step, we employ a popular model order selection method and a subspace line spectral estimator to the denoised measurements for line spectral estimation. Numerical results show that the proposed approach outperforms a recently introduced atomic norm minimization based denoising method and offers a substantial improvement compared with the line spectral estimation results obtained by directly applying the subspace estimator without denoising.

SPS on Twitter

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar