JSTSP Volume 13 Issue 6

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

2019

JSTSP Volume 13 Issue 6

This paper proposes nonorthogonal sharing of available resources between latency-critical and latency-tolerant communication for fulfilling tight requirements of ultrareliable low-latency communication (URLLC) as well as avoiding inefficient spectrum utilization of grant-based (GB) access for sporadic URLLC traffic.

For the Internet of Things (IoT), there might be a large number of devices to be connected to the Internet through wireless technologies. In general, IoT devices would have various constraints due to limited processing capability, memory, energy source, and so on, and it is desirable to employ efficient wireless transmission schemes, especially for uplink transmissions.

The last few years have witnessed a tremendous growth of the demand for wireless services and a significant increase of the number of mobile subscribers. A recent data traffic forecast from Cisco reported that the global mobile data traffic reached 1.2 zettabytes per year in 2016, and the global IP traffic will increase nearly threefold over the next 5 years.

A novel scheme called dual-polarized spatial media-based modulation (DP-SMBM), which combines judiciously the media-based modulation (MBM), spatial modulation (SM), and dual-polarized (DP) antennas, is proposed in this paper. The DP-SMBM introduces a new DP domain to convey additional information without occupying extra physical space, effectively enhancing the transmission rate and alleviating the finite space issue.

In this paper we propose a family of index modulation systems which can operate with low-power consumption and low operational complexity for multi-user communication. This is particularly suitable for non-time sensitive Internet of Things (IoT) applications such as telemetry, smart metering, and soon.

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel