IEEE SPS-DSI Webinar: 17 February 2022, by Dr. Alexander Jung

You are here

Inside Signal Processing Newsletter Home Page

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

News and Resources for Members of the IEEE Signal Processing Society

IEEE SPS-DSI Webinar: 17 February 2022, by Dr. Alexander Jung

(Signal Processing and Data Science Initiative, Data SciEnce on GrAphS (DEGAS) )

Title: Federated Learning in Big Data over Networks
Date: 17 February 2022
Time: 3:00 PM Paris time
(Local time | add to calendar)
Duration: Approximately 1 Hour
Presenters: Dr. Alexander Jung


Register for the webinar to acquire Zoom link!

About the topic:

Many important application domains generate distributed collections of heterogeneous local datasets. These local datasets are related via an intrinsic network structure that arises from domain-specific notions of similarity between local datasets. Networked federated learning aims at learning a tailored local model for each local dataset. We formulate networked federated learning using the concept of generalized total variation (GTV) minimization as a regularizer. This formulation unifies and considerably extends recent approaches to federated multi-task learning. We derive precise conditions on the local models as well on their network structure such that our algorithm learns nearly optimal local models. Our analysis reveals an interesting interplay between the (information-) geometry of local models and the (cluster-) geometry of their network.

About the presenter:

Alexander Jung

Alexander Jung received the Ph.D. degree (with sub auspiciis) in 2012 from Technical University Vienna (TU Vienna). After Post-Doctoral periods at TU Vienna and ETH Zurich, he joined Aalto University as an Assistant Professor for Machine Learning in 2015. He leads the group “Machine Learning for Big Data” that studies explainable machine learning in network-structured data.

Dr. Jung first-authored a paper that won a Best Student Paper Award at IEEE ICASSP 2011. He received an AWS Machine Learning Research Award and was the “Computer Science Teacher of the Year” at Aalto University in 2018. Currently, he serves as an associate editor for the IEEE Signal Processing Letters and as the chair of the IEEE Finland Jt. Chapter on Signal Processing and Circuits and Systems. He authored the textbook, Machine Learning: The Basics (Springer, 2022).

SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting…
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in…
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat…
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special…
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:…

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel