Parametric Classification of Bingham Distributions Based on Grassmann Manifolds

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Parametric Classification of Bingham Distributions Based on Grassmann Manifolds

By: 
Muhammad Ali; Junbin Gao; Michael Antolovich

In this paper, we present a novel Bayesian classification framework of the matrix variate Bingham distributions with the inclusion of its normalizing constant and develop a consistent general parametric modeling framework based on the Grassmann manifolds. To calculate the normalizing constants of the Bingham model, this paper extends the method of saddle-point approximation (SPA) to a new setting. Furthermore, it employs the standard theory of maximum likelihood estimation (MLE) to evaluate the involved parameters in the used probability density functions. The validity and performance of the proposed approach are tested on 14 real-world visual classification databases. We have compared the classification performance of our proposed approach with the baselines from the previous related approaches. The comparison shows that on most of the databases, the performance of our approach is superior.

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel