IEEE TIP Article

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

IEEE TIP Article

Diversity “multiple description” (MD) source coding promises graceful degradation in the presence of a priori unknown number of erased packets in the channel. A simple coding scheme for the case of two packets consists of oversampling the source by a factor of two and delta-sigma quantization. This approach was applied successfully to JPEG-based image coding over a lossy packet network, where the interpolation and splitting into two descriptions are done in the discrete cosine transform (DCT) domain.

Video surveillance and its applications have become increasingly ubiquitous in modern daily life. In video surveillance system, video coding as a critical enabling technology determines the effective transmission and storage of surveillance videos. In order to meet the real-time or time-critical transmission requirements of video surveillance systems, the low-delay (LD) configuration of the advanced high efficiency video coding (HEVC) standard is usually used to encode surveillance videos.

RGB-thermal salient object detection (SOD) aims to segment the common prominent regions of visible image and corresponding thermal infrared image that we call it RGBT SOD. Existing methods don’t fully explore and exploit the potentials of complementarity of different modalities and multi-type cues of image contents, which play a vital role in achieving accurate results.

We propose a neural network model to estimate the current frame from two reference frames, using affine transformation and adaptive spatially-varying filters. The estimated affine transformation allows for using shorter filters compared to existing approaches for deep frame prediction. The predicted frame is used as a reference for coding the current frame.

Radial distortion has widely existed in the images captured by popular wide-angle cameras and fisheye cameras. Despite the long history of distortion rectification, accurately estimating the distortion parameters from a single distorted image is still challenging. The main reason is that these parameters are implicit to image features, influencing the networks to learn the distortion information fully.

The performance of ellipse fitting may significantly degrade in the presence of outliers, which can be caused by occlusion of the object, mirror reflection or other objects in the process of edge detection. In this paper, we propose an ellipse fitting method that is robust against the outliers, and thus maintaining stable performance when outliers can be present.

Gait recognition aims to recognize persons' identities by walking styles. Gait recognition has unique advantages due to its characteristics of non-contact and long-distance compared with face and fingerprint recognition. Cross-view gait recognition is a challenge task because view variance may produce large impact on gait silhouettes.

Kinship recognition is a prominent research aiming to find if kinship relation exists between two different individuals. In general, child closely resembles his/her parents more than others based on facial similarities. These similarities are due to genetically inherited facial features that a child shares with his/her parents. Most existing researches in kinship recognition focus on full facial images to find these kinship similarities.

Street Scene Change Detection (SSCD) aims to locate the changed regions between a given street-view image pair captured at different times, which is an important yet challenging task in the computer vision community. The intuitive way to solve the SSCD task is to fuse the extracted image feature pairs, and then directly measure the dissimilarity parts for producing a change map.

The existing neural architecture search (NAS) methods usually restrict the search space to the pre-defined types of block for a fixed macro-architecture. However, this strategy will limit the search space and affect architecture flexibility if block proposal search (BPS) is not considered for NAS. As a result, block structure search is the bottleneck in many previous NAS works. In this work, we propose a new evolutionary algorithm referred to as latency EvoNAS (LEvoNAS) for block structure search, and also incorporate it to the NAS framework by developing a novel two-stage framework referred to as Block Proposal NAS (BP-NAS). 

Pages

SPS on Twitter

  • SPS WEBINAR: Join us on Tuesday, 2 August for a new SPS Webinar, when Dr. Yue Li presents "Learning a Convolutional… https://t.co/Eps90ySYzq
  • Registration for ICIP 2021 is now open! This hybrid event will take place 19-22 September, with the in-person compo… https://t.co/s3kiGP4EPh
  • The Brain Space Initiative Talk Series continues on Friday, 30 July when Dr. Ioulia Kovelman presents "The Bilingua… https://t.co/6EqwqmBD0Q
  • There’s still time to register your team to win the US$5,000 grand prize in the 5-Minute Video Clip Contest, “Autom… https://t.co/76kh4jeL6i
  • Join the SPS Vizag Bay, Long Island, and Finland Chapters for the Seasonal School on Signal Processing and Communic… https://t.co/l04xac8qP5

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar