IEEE TIP Article

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

IEEE TIP Article

We propose a novel multi-stream architecture and training methodology that exploits semantic labels for facial image deblurring. The proposed Uncertainty Guided Multi-Stream Semantic Network (UMSN) processes regions belonging to each semantic class independently and learns to combine their outputs into the final deblurred result. Pixel-wise semantic labels are obtained using a segmentation network. 

We introduce an effective fusion-based technique to enhance both day-time and night-time hazy scenes. When inverting the Koschmieder light transmission model, and by contrast with the common implementation of the popular dark-channel [1] , we estimate the airlight on image patches and not on the entire image.

Although many spectral unmixing models have been developed to address spectral variability caused by variable incident illuminations, the mechanism of the spectral variability is still unclear. This paper proposes an unmixing model, named illumination invariant spectral unmixing (IISU).

We present a method to compress geometry information of point clouds that explores redundancies across consecutive frames of a sequence. It uses octrees and works by progressively increasing the resolution of the octree. At each branch of the tree, we generate an approximation of the child nodes by a number of methods which are used as contexts to drive an arithmetic coder.

Image semantic segmentation tasks and methods based on weakly supervised conditions have been proposed and achieve better and better performance in recent years. However, the purpose of these tasks is mainly to simplify the labeling work. In this paper, we establish a new and more challenging task condition.

The inverse synthetic aperture radar (ISAR) imaging technique of a moving target with sparse sampling data has attracted wide attention due to its ability to reduce the data collection burden. However, traditional low-rank or 2D compressive sensing (CS)-based ISAR imaging methods can handle the random sampling or the separable sampling data only. 

Collective activity recognition, which tells what activity a group of people is performing, is a cutting-edge research topic in computer vision. Different from action performed by individuals, collective activity needs to consider the complex interactions among different people. However, most previous works require exhaustive annotations such as accurate label information of individual actions, pairwise interactions, and poses, which could not be easily available in practice. 

The prevailing characteristics of micro-videos result in the less descriptive power of each modality. The micro-video representations, several pioneer efforts proposed, are limited in implicitly exploring the consistency between different modality information but ignore the complementarity.

The prevailing characteristics of micro-videos result in the less descriptive power of each modality. The micro-video representations, several pioneer efforts proposed, are limited in implicitly exploring the consistency between different modality information but ignore the complementarity.

To promote the applications of semantic segmentation, quality evaluation is important to assess different algorithms and guide their development and optimization. In this paper, we establish a subjective semantic segmentation quality assessment database based on the stimulus-comparison method. Given that the database reflects the relative quality of semantic segmentation result pairs...

Pages

SPS on Twitter

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar