Skip to main content

TIP Articles

<p>TIP Articles</p>

GeodesicPSIM: Predicting the Quality of Static Mesh With Texture Map via Geodesic Patch Similarity

Static meshes with texture maps have attracted considerable attention in both industrial manufacturing and academic research, leading to an urgent requirement for effective and robust objective quality evaluation. However, current model-based static mesh quality metrics (i.e., metrics that directly use the raw data of the static mesh to extract features and predict the quality) have obvious limitations: most of them only consider geometry information, while color information is ignored, and they have strict constraints for the meshes’ geometrical topology.

Read more

Saliency Segmentation Oriented Deep Image Compression With Novel Bit Allocation

Image compression distortion can cause performance degradation of machine analysis tasks, therefore recent years have witnessed fast progress in developing deep image compression methods optimized for machine perception. However, the investigation still lacks for saliency segmentation. First, in this paper we propose a deep compression network increasing local signal fidelity of important image pixels for saliency segmentation, which is different from existing methods utilizing the analysis network loss for backward propagation.

Read more

A Discrete-Mapping-Based Cross-Component Prediction Paradigm for Screen Content Coding

Cross-component prediction is an important intra-prediction tool in the modern video coders. Existing prediction methods to exploit cross-component correlation include cross-component linear model and its extension of multi-model linear model. These models are designed for camera captured content. For screen content coding, where videos exhibit different signal characteristics, a cross-component prediction model tailored to their characteristics is desirable.

Read more

Dynamic Dense Graph Convolutional Network for Skeleton-Based Human Motion Prediction

Graph Convolutional Networks (GCN) which typically follows a neural message passing framework to model dependencies among skeletal joints has achieved high success in skeleton-based human motion prediction task. Nevertheless, how to construct a graph from a skeleton sequence and how to perform message passing on the graph are still open problems, which severely affect the performance of GCN.

Read more

Transition Is a Process: Pair-to-Video Change Detection Networks for Very High Resolution Remote Sensing Images

As an important yet challenging task in Earth observation, change detection (CD) is undergoing a technological revolution, given the broadening application of deep learning. Nevertheless, existing deep learning-based CD methods still suffer from two salient issues: 1) incomplete temporal modeling, and 2) space-time coupling. In view of these issues, we propose a more explicit and sophisticated modeling of time and accordingly establish a pair-to-video change detection (P2V-CD) framework. First, a pseudo transition video that carries rich temporal information is constructed from the input image pair, interpreting CD as a problem of video understanding.

Read more

State-Aware Compositional Learning Toward Unbiased Training for Scene Graph Generation

How to avoid biased predictions is an important and active research question in scene graph generation (SGG). Current state-of-the-art methods employ debiasing techniques such as resampling and causality analysis. However, the role of intrinsic cues in the features causing biased training has remained under-explored. In this paper, for the first time, we make the surprising observation that object identity information, in the form of object label embeddings (e.g. GLOVE), is principally responsible for biased predictions. 

Read more