TIP Volume 34 | 2025

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

2025
Issue Title: 
TIP Volume 34 | 2025

In the domain of 3D Human Pose Estimation, which finds widespread daily applications, the requirement for convenient acquisition equipment continues to grow. To satisfy this demand, we focus on a short-baseline binocular setup that offers both portability and a geometric measurement capability that significantly reduces depth ambiguity.

Static meshes with texture maps have attracted considerable attention in both industrial manufacturing and academic research, leading to an urgent requirement for effective and robust objective quality evaluation. However, current model-based static mesh quality metrics (i.e., metrics that directly use the raw data of the static mesh to extract features and predict the quality) have obvious limitations: most of them only consider geometry information, while color information is ignored, and they have strict constraints for the meshes’ geometrical topology.

Pyramid Temporal Hierarchy Network (PTH-Net) is a new paradigm for dynamic facial expression recognition, applied directly to raw videos, without face detection and alignment. Unlike the traditional paradigm, which focus only on facial areas and often overlooks valuable information like body movements, PTH-Net preserves more critical information.

Image compression distortion can cause performance degradation of machine analysis tasks, therefore recent years have witnessed fast progress in developing deep image compression methods optimized for machine perception. However, the investigation still lacks for saliency segmentation. First, in this paper we propose a deep compression network increasing local signal fidelity of important image pixels for saliency segmentation, which is different from existing methods utilizing the analysis network loss for backward propagation.

Portrait shadow removal is a challenging task due to the complex surface of the face. Although existing work in this field makes substantial progress, these methods tend to overlook information in the background areas. However, this background information not only contains some important illumination cues but also plays a pivotal role in achieving lighting harmony between the face and the background after shadow elimination.

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel