Skip to main content

IEEE TIP Article

A Multichannel Cross-Modal Fusion Framework for Electron Tomography

In this paper, we present a multichannel cross-modal fusion algorithm to combine two complementary modalities in electron tomography: X-ray spectroscopy and scanning transmission electron microscopy (STEM). The former reveals compositions with high elemental specificity but low signal-to-noise ratio (SNR), while the latter characterizes the structure with high SNR but little chemical information.

Read more

An ADMM Approach to Masked Signal Decomposition Using Subspace Representation

Signal decomposition is a classical problem in signal processing, which aims to separate an observed signal into two or more components, each with its own property. Usually, each component is described by its own subspace or dictionary. Extensive research has been done for the case where the components are additive, but in real-world applications, the components are often non-additive.

Read more