The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
Signal decomposition is a classical problem in signal processing, which aims to separate an observed signal into two or more components, each with its own property. Usually, each component is described by its own subspace or dictionary. Extensive research has been done for the case where the components are additive, but in real-world applications, the components are often non-additive. For example, an image may consist of a foreground object overlaid on a background, where each pixel either belongs to the foreground or the background. In such a situation, to separate signal components, we need to find a binary mask which shows the location of each component. Therefore, it requires solving a binary optimization problem. Since most of the binary optimization problems are intractable, we relax this problem to the approximated continuous problem and solve it by alternating optimization technique. We show the application of the proposed algorithm for three applications: separation of text from a background in images, separation of moving objects from a background undergoing global camera motion in videos, and separation of sinusoidal and spike components in 1-D signals. We demonstrate in each case that considering the non-additive nature of the problem can lead to a significant improvement.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.