IEEE TIP Article

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

IEEE TIP Article

Kinship recognition is a prominent research aiming to find if kinship relation exists between two different individuals. In general, child closely resembles his/her parents more than others based on facial similarities. These similarities are due to genetically inherited facial features that a child shares with his/her parents. Most existing researches in kinship recognition focus on full facial images to find these kinship similarities.

Street Scene Change Detection (SSCD) aims to locate the changed regions between a given street-view image pair captured at different times, which is an important yet challenging task in the computer vision community. The intuitive way to solve the SSCD task is to fuse the extracted image feature pairs, and then directly measure the dissimilarity parts for producing a change map.

The existing neural architecture search (NAS) methods usually restrict the search space to the pre-defined types of block for a fixed macro-architecture. However, this strategy will limit the search space and affect architecture flexibility if block proposal search (BPS) is not considered for NAS. As a result, block structure search is the bottleneck in many previous NAS works. In this work, we propose a new evolutionary algorithm referred to as latency EvoNAS (LEvoNAS) for block structure search, and also incorporate it to the NAS framework by developing a novel two-stage framework referred to as Block Proposal NAS (BP-NAS). 

Graph-based transforms have been shown to be powerful tools in terms of image energy compaction. However, when the size of the support increases to best capture signal dependencies, the computation of the basis functions becomes rapidly untractable. This problem is in particular compelling for high dimensional imaging data such as light fields. The use of local transforms with limited supports is a way to cope with this computational difficulty.

This paper proposes a multi-layer neural network structure for few-shot image recognition of novel categories. The proposed multi-layer neural network architecture encodes transferable knowledge extracted from a large annotated dataset of base categories. This architecture is then applied to novel categories containing only a few samples.

RGB-induced salient object detection has recently witnessed substantial progress, which is attributed to the superior feature learning capability of deep convolutional neural networks (CNNs). However, such detections suffer from challenging scenarios characterized by cluttered backgrounds, low-light conditions and variations in illumination. Instead of improving RGB based saliency detection, this paper takes advantage of the complementary benefits of RGB and thermal infrared images.

This paper proposes a multi-layer neural network structure for few-shot image recognition of novel categories. The proposed multi-layer neural network architecture encodes transferable knowledge extracted from a large annotated dataset of base categories. This architecture is then applied to novel categories containing only a few samples.

We propose a novel multi-stream architecture and training methodology that exploits semantic labels for facial image deblurring. The proposed Uncertainty Guided Multi-Stream Semantic Network (UMSN) processes regions belonging to each semantic class independently and learns to combine their outputs into the final deblurred result. Pixel-wise semantic labels are obtained using a segmentation network. 

We introduce an effective fusion-based technique to enhance both day-time and night-time hazy scenes. When inverting the Koschmieder light transmission model, and by contrast with the common implementation of the popular dark-channel [1] , we estimate the airlight on image patches and not on the entire image.

Although many spectral unmixing models have been developed to address spectral variability caused by variable incident illuminations, the mechanism of the spectral variability is still unclear. This paper proposes an unmixing model, named illumination invariant spectral unmixing (IISU).

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel