Block Proposal Neural Architecture Search

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Block Proposal Neural Architecture Search

Jiaheng Liu, Shunfeng Zhou, Yichao Wu;Ken Chen, Wanli Ouyang, Dong Xu

The existing neural architecture search (NAS) methods usually restrict the search space to the pre-defined types of block for a fixed macro-architecture. However, this strategy will limit the search space and affect architecture flexibility if block proposal search (BPS) is not considered for NAS. As a result, block structure search is the bottleneck in many previous NAS works. In this work, we propose a new evolutionary algorithm referred to as latency EvoNAS (LEvoNAS) for block structure search, and also incorporate it to the NAS framework by developing a novel two-stage framework referred to as Block Proposal NAS (BP-NAS). Comprehensive experimental results on two computer vision tasks demonstrate the superiority of our newly proposed approach over the state-of-the-art lightweight methods. For the classification task on the ImageNet dataset, our BPN-A is better than 1.0-MobileNetV2 with similar latency, and our BPN-B saves 23.7% latency when compared with 1.4-MobileNetV2 with higher top-1 accuracy. Furthermore, for the object detection task on the COCO dataset, our method achieves significant performance improvement than MobileNetV2, which demonstrates the generalization capability of our newly proposed framework.


IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel