The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
This work presents a generalization of classical factor analysis (FA). Each of M channels carries measurements that share factors with all other channels, but also contains factors that are unique to the channel. Furthermore, each channel carries an additive noise whose covariance is diagonal, as is usual in factor analysis, but is otherwise unknown. This leads to a problem of multi-channel factor analysis with a specially structured covariance model consisting of shared low-rank components, unique low-rank components, and diagonal components. Under a multivariate normal model for the factors and the noises, a maximum likelihood (ML) method is presented for identifying the covariance model, thereby recovering the loading matrices and factors for the shared and unique components in each of the M multiple-input multipleoutput (MIMO) channels. The method consists of a three-step cyclic alternating optimization, which can be framed as a block minorization-maximization (BMM) algorithm. Interestingly, the three steps have closed-form solutions and the convergence of the algorithm to a stationary point is ensured. Numerical results demonstrate the performance of the proposed algorithm and its application to passive radar.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.